• Title/Summary/Keyword: Legume Forage

Search Result 115, Processing Time 0.029 seconds

Effects of Mixed-Sowing of Legume and Applying of Cattle Manure on the Productivity, Feed Values and Organic Hanwoo Carrying Capacity of Rye in Southern Area of Gyeongbuk Province (경북남부지방에서 콩과 사료작물의 혼파와 우분의 시용이 호밀의 생산성, 사료가치 및 단위면적당 유기한우 사육능력에 미치는 영향)

  • Hwangbo, Soon;Choi, Kwang-Won;Jung, Soon-Mi;Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.583-593
    • /
    • 2015
  • This study was conducted to investigate the effects of mixed-sowing of legume forage and applying of cattle manure on the productivity of organic rye to provide dairy farmers with safe organic feeds. Also the present study aimed to evaluate optimal applying level of cattle manure and carrying capacity of Korean native cattle (Hanwoo) per unit area. The amount of crude protein was significantly higher in the mixed-sowing of legume forage (average 760~786 kg/ha) than in the single-sowing of rye (average 353 kg/ha) (p<0.05). The mixed-sowing of forage peas and the single-sowing of rye tended to improve by increasing the level of nitrous fertilization rather than the fertilization treatment. The amount of crude protein on the rye according to the mixed-sowing of legume was significantly higher in the mixture (average 8.29~9.90%) than in the single (average 4.93%) (p<0.05). The comparison by the level of nitrogen fertilization indicated significantly high for the rye in 50 kg N/ha than in fertilization treatments (p<0.05). Total digestible nutrients (TDN) amount in the single-sowing of rye was average 46.86% and has lower than average 49.96~50.12% of the mixed-sowing of legume, and especially the mixed-sowing of forage pea was the highest with 54.55% in 150 kg N/ha for the level of nitrogen fertilization (p<0.05). The breeding ability of annual organic livestocks per unit area according to the feed value of rye presented significantly higher ability in the mixed-sowing of legume (3.72~4.12 heads) than the single-sowing of rye (average 2.26 heads) (p<0.05). By summarizing above results, the mixed-sowing of legume is required to improve the productivity and the feed value of rye for increasing organic livestock breeding ability in southern area of Gyeongbuk regions, and the study for identifying the appropriate fertilization level using livestock excretions is further necessary.

Molecular Genetics of the Model Legume Medicago truncatula

  • Nam, Young-Woo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2001
  • Medicago truncatula is a diploid legume plant related to the forage crop alfalfa. Recently, it has been chosen as a model species for genomic studies due to its small genome, self-fertility, short generation time, and high transformation efficiency. M. truncatula engages in symbiosis with nitrogen-fixing soil bacterium Rhizobium meliloti. M. truncatula mutants that are defective in nodulation and developmental processes have been generated. Some of these mutants exhibited altered phenotypes in symbiotic responses such as root hair deformation, expression of nodulin genes, and calcium spiking. Thus, the genes controlling these traits are likely to encode functions that are required for Nod-factor signal transduction pathways. To facilitate genome analysis and map-based cloning of symbiotic genes, a bacterial artificial chromosome library was constructed. An efficient polymerase chain reaction-based screening of the library was devised to fasten physical mapping of specific genomic regions. As a genomics approach, comparative mapping revealed high levels of macro- and microsynteny between M. truncatula and other legume genomes. Expressed sequence tags and microarray profiles reflecting the genetic and biochemical events associated with the development and environmental interactions of M. truncatula are assembled in the databases. Together, these genomics programs will help enrich our understanding of the legume biology.

  • PDF

Nitrogen Fixation of Legumes and Transfer to Grasses in Spring Paddy Soil (춘계답리작 토양에서 두과의 질소고정과 이의 화본과로의 이동)

  • Lee, Hyo-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.3
    • /
    • pp.167-172
    • /
    • 2007
  • Manure recycle is an emerging issue in agriculture in Korea these days. Farmers are keeping eye on legume mixture with grasses for nitrogen fixation and transfer to companion crops by legumes. We had a trial to investigate the effect of different legume mixtures on nitrogen fixation and transfer in spring soil. The treatment was arranged in a randomized complete block design with three replications. Three different mixtures were used(rye+hairy vetch, Italian ryegrass+crimson clover, oat+pea) and sowed in pots with paddy soil from western part of Korea(Seo Chon County). Pots with rye+vetch were transplanted from field of RDA(rural development administration) in Suwon on 2 February 2007 and other mixture treatments were sowed on early March with different sowing rate(7:3=Italian:crimson, 6:4=oat:pea). $(^{15}NH_4)_2SO_4$ solution at. $99.8\;atom%^{15}N$ was applied to the each pot at the rate of $2kg\;N\;ha^{-1}$. Application was done on 6 April at rye+vetch pots and remainder were applied on April 16. Forage were harvested from each pot at ground level in heading stage and separated into legume and grass. Total N content and $^{15}N$ value were determined using a continuous flow stable isotope ratio mass spectrometry. DM yield of rye+vetch, Italian+crimson and oat+pea were 6,607, 3,213 and 4,312 kg/ha, respectively. Proportion of N from fixation was 0.73(rye+vetch), 0.42(Italian+crimson) and 0.93(oat+pea). The percentages of N transfer from legume to grass were from 61% to 24% in different method by treatment and -35% to 21% in isotope dilution method.

Effects of Seed Mixture and Nitrogen Levels on Botanical Composition and Forage Productivity for Pasture in Jeju (제주지역 초지에서 혼파조합 및 질소수준이 식생구성 및 사초생산성에 미치는 영향)

  • Park, H.S.;Hwang, K.J.;Park, N.G.;Kim, W.H.;Lee, J.K.;Kim, J.G.;Lee, K.W.;Lim, Y.C.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • A study was conducted to determine the effects of seed mixture and nitrogen application levels on botanical composition and forage productivity in grazing pasture. Legume forage have the ability to take nitrogen from the atmosphere and convert it into a form usable by plants. Including legumes in mixtures with grass lowers the amount of nitrogen fertilizer required to produce forages. Dry matter (DM) yield of grass-legume mixtures was more than that of grass mono-cultivated and grass+white clover+red clover mixtures was the highest as 17,391 kg/ha in legume mixture (P<0.01). The highest DM yield was in N-200 kg/ha, but it was similar between N-100 kg/ha(15,128) and N-200 kg/ha (16,017). The large decline in the proportion of grass during April to June in 2004 probably was due to the drought and summer depression in grass-legume mixtures. Grass proportions decreased by 8.2% after 2 year, and white clover was dominated in grass-white clover mixture by May 2005. Crud protein (CP) content tends to increase with increased nitrogen application level.

  • PDF

Studies on Corn-Legume Intercropping System IV. Effects of corn-soybean intercropping on chemical composition and TDN yield (Silage용 옥수수와 두과작물의 간작에 관한 연구 IV. Silage용 옥수수 (Zea mays L.) 와 콩 ( Glycine max (L.) Merr.) 의 간작이 영양성분함량 및 TDN수량에 미치는 영향)

  • 이성규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.2
    • /
    • pp.113-118
    • /
    • 1989
  • This experiment was carried out to compare chemical composition, TDN yield of corn-soybean intercropping and corn monocropping forage plants at different harvesting time and obtained the following results. 1. In both cropping systems, the content of chemical composition of forage were changed same pattern in growing stage. The content of crude protein in corn-soybean intercropping forage at yellow stage increased more than that of corn nonocropping forage, while the crude fat in corn monocropping forage plants increased than that of corn-soybean intercropping forage plants at mature stage. 2. The crude fiber, crude ash, ADF content of forage plants in both cropping system decreased same pattern in growing period, however, NFE content of forage increased with maturity. 3. TDN yield of corn-soybean intercropping and corn monocropping forage plants at yellow stage obtained similar results and TDN yield per 10a in intercropping and monocropping were 1006.lkg and 978.6kg, respectively. 4. Consequently, corn-soybean interaopping system could be increased crude protein yield without decreasing of dry matter yield in comparison with corn monocropping system for corn silage.

  • PDF

The Optimal Combination and Amount of Major Nutrients Computed by the Homes Systematic Variation Technique for the Hilly Pasture Development II. Determination of the optimal combination of $\sum$anion:$\sum$ cation and the optimal appoication rate of total ions (산지초지개발을 위한 다량요소의 적정 시비비율 및 시비량결정에 관한 연구 II. 혼파초지에서 $\sum$음이온:$\sum$양이온 적정시비비율 및 적정총량분시비량)

  • 정연규;김성채
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 1989
  • This pot experiments were conducted to find out the optimal fertilization ratios of ${\Sigma}anion$ : ${\Sigma}cation$, ${\Sigma}A$/${\Sigma}C$, and the optimal application rates of total major nutrients in an orchardgrass/ladino clover mixed sward. The optimum ratios and concentrations in equivalent basis were computed by the Homes systematic variations technique. The results were summarized as follows; 1. The optimum fertilization ratios of ${\Sigma}A$ : ${\Sigma}C$ and the optimum application rates of total nutrients for the high yields by forage species in a mixed sward were obtained (Table 6 in detail); ${\Sigma}A$ : ${\Sigma}C$ = 2 : 1 at 80 and 320 meq/pot, and 3 : 2 at 560 and 800 meq for grass and grass plus legume, and ${\Sigma}A$ : ${\Sigma}C$ = 1 : 2 for legume in general. 2. The optimum application rates of total nutrients for the high yields of grass and grass plus kgum were increased by decreasing the ${\Sigma}A$/ ${\Sigma}C$: ratio, whereas these for legume showed a valible. range without significance. 3. The yields 01 grass and grass plus legume were generally increasing by increasing both the ${\Sigma}A$/ ${\Sigma}C$ ratio and total concentration, but they were significantly higher at the ${\Sigma}A$/ ${\Sigma}C$ = 1.273 than at the 2.125 under the high total ion concentration. The legume yields were proportional to ${\Sigma}C$ ratio and increased by increasing the total ion concentration under the condition of high ${\Sigma}C$ ratio. 4. The efficiencies of ${\Sigma}A$ and ${\Sigma}C$ in relation to the grass and grass plus legume yields were highest with the low ratios of each other and the low rates of total nutrients ${\Sigma}A$ efficiency m the legume yield tended to be similar to that of ${\Sigma}A$ in the grass yield noted above. The ${\Sigma}C$ efficiency in the legume yield, however, was generally proportional to the ${\Sigma}C$ ratio except at the low rate of 80 meqlpot. 5. The yields of grass plus legume, yield components and botanical compositions in a mixed sward were greatly influenced by the ${\Sigma}A$/${\Sigma}C$ ratios, the fertilization rates of total nutrients, and the interaction of ratio and rate noted above. These effects were generally different and opposite accading to grass and legume. In addition, the soil chemical properties and mineral contents of forages were partially influenced by these systematic variations.

  • PDF

Effect of Mixed Seeding between Triticale and Legume crops for Increasing Protein Contents in Forage (조사료 단백질 함량 증진을 위한 트리티케일과 콩과작물 혼파 효과)

  • Cho, Sang-Kyun;Oh, Young-Jin;Park, Hyeong-Ho;Jang, Yun-Woo;Song, Tae-Hwa;Noh, Jae-Hwan;Park, Tae-Il;Park, Kwang-Geun;Kang, Hyeon-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.521-525
    • /
    • 2014
  • This study was conducted in the central northern area that has a smaller production of winter forage crop compared to the southern areas, in order to identify the optimal mix of seeding, mix ratio and seeding method. The results showed that among the mixed seeding of triticale and crimson clover, the mix of triticale+crimson clover, mixing ratio is 8:2 (w/w), had the largest dry weight of 1,462 kg/10a, which was more than either single seeding of triticale or crimson clover. Although there were no total quantity differences between different mix ratios, there were differences in quantity between sowing types with broadcasting seeding is more than in narrow strips seeding. In forage value of mixed seeding combination, crude protein contents in single seeding of crimson clover showed the highest value at 17.2%, and in single seed of triticale showed the lowest at 7.4%. In mixed seeding combination the crude protein contents were highest in triticale+crimson clover, mixing ratio is 7:3 (w/w), at 9.0%. The mixed seeding between triticlale and legume crops will helpful for increasing forage value.

Effects of legume mixture on nitrogen fixation and transfer to grasses in spring paddy field

  • Lee, H.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.161-164
    • /
    • 2011
  • Nitrogen fixation by legumes can be valuable sources for organic farming. This study was to investigate the effect of different legume mixtures on nitrogen fixation and transfer to grasses on spring paddy field. Three different mixtures were used (rye+hairy vetch, Italian ryegrass+crimson clover, oat+pea) in a randomized complete block design with three replications and sowed in pots with different sowing rate (5:5 rye:hairy vetch,7:3=Italian:crimson, 6:4=oat:pea) on early March. $(^{15}NH_4)SO_4$ solution at. 99.8 atom%$^{15}N$ was applied to the each pot at the rate of 2kg N $ha^{-1}$ on $16^{th}$ April. Forage were harvested at ground level in heading stage and separated into legume and grass. Total N content and $^{15}N$ value were determined using a continuous flow stable isotope ratio mass spectrometry. DM yield of rye+vetch, Italian+crimson and oat+pea were 6,607, 3,213 and 4,312kg/ha, respectively. Proportion of N from fixation was 0.73(rye+vetch), 0.42(Italian+crimson) and 0.93(oat+pea). The percentages of N transfer from legume to grass were from 61% to 24% in different method by treatments and -35% to 21% in isotope dilution method.

Effect of Barley, Italian ryegrass and Legume Mixture on Nitrogen Fixation and Transfer to Grasses on Spring Paddy Field using Isotope Dilution and Difference Method (답리작 춘계포장에서 보리 및 이탈리안 라이그라스와 두과의 혼파비율이 동위원소 희석법 및 차이법을 이용한 질소고정 및 이동에 미치는 영향)

  • Lee, Hyo-Won;Lee, Hyo-Jin;Kim, Won Ho;Yoon, Bong Ki;Ko, Han Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.318-324
    • /
    • 2016
  • In order to study the effect of barley, Italian ryegrass (IRG), and legume mixture on nitrogen fixation and transfer to grasses on spring paddy field, an experiment was carried out from Oct. 2006 to June 2007 in Naju, Korea. A split plot design with three replications was used for the experiment. One reference plot was assigned for each treatment to determine nitrogen fixation. Main plots consisted of Chinese milk vetch, crimson clover, forage pea, and hairy vetch with barley, respectively. Subplot treatment were barley or IRG with four seeding ratio of legumes (50:50, 60:40, 70:30, and 80:20). To estimate N fixation by legumes, $^{15}N$ isotope dilution technique was used. $^{15}N$ fertilizer [$(^{15}NH_4)_2SO_4$ solution at 99.8 atom N] was uniformly applied to $600cm^2$ in the middle of each plot on April 15, 2007. Plots were harvest by hand on June 8, 2007. Dried sample were ground to a fine power and analyzed for total N isotope N. $^{15}N$ was determined using elemental analyzer-isotope ratio mass spectrometry. The calculation of N transfer was determined with the isotope dilution method. The content of N was higher in legumes than that in barley or Italian ryegrass. Nitrogen level in forage pea was significantly higher than that of other legumes. There were significantly differences in N content between legumes in IRG mixture. Atom % $^{15}N$ excess was significantly different in legumes with barley. The 60:40 sub plot had higher (p<0.05) atom % $^{15}N$ than other seeding ratio treatments. The enrichment ranged from 0 to 0.58. Compared to barley, the enrichment of IRG with its accompanied legumes was higher, ranging from 0.38 to 1.0. The N derived from the atmosphere (Ndfa) ranged from 0% to 49.5% with barley-legume mixture. It ranged from 0 to 60.5% in IRG-legume plots. N transfer from legumes to neighboring grasses was 12.3 to 90.9 kg/ha for barley-legume mixture and 31.7 to 107.8 kg/ha for IRG plots. IRG plots showed higher N transfer for IRG-legume mixture in general based on difference method. Based on $^{15}N$ dilution method, the N transfer was 0 to 36.1 kg/ha for barley-legume mixture and 0 to 50.6 kg/ha for IRG plots. There was a tendency toward higher N transfer on the difference method than that of the $^{15}N$ dilution method.

Yield and Species Composition of Binary Mixtures of Kura Clover with Kentucky Bluegrass, Orchardgrass, or Smooth Bromegrass

  • Kim, B.W.;Albrecht, K.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.995-1002
    • /
    • 2008
  • Kura clover (Trifolium ambiguum M. Bieb.) is a rhizomatous perennial legume that has potential as a forage crop in the North-Central USA because of its excellent persistence under environmental extremes. Little information is available about defoliation effects on productivity of mixtures of kura clover with grasses typically grown in this region. Two field trials were conducted to evaluate the effects of defoliation management on yield and species composition of binary mixtures of 'Rhizo' kura clover with 'Comet' orchardgrass (Dactylis glomerata L.), 'Badger' smooth bromegrass (Bromus inermis Leyss.), 'Park' Kentucky bluegrass (Poa pratensis L.), and solo-seeded kura clover near Arlington, WI. Three harvest schedules (three, four, or five times annually) and two cutting heights (4 or 10 cm) were imposed. Infrequent defoliation and lower cutting height produced significantly greater total forage yield, 6.6, 5.8, and 5.2 Mg/ha in 3-, 4-, and 5-harvest systems, respectively; and 6.5 and 5.2 Mg/ha for the 4- and 10-cm cutting height, respectively. Averaged over 3 yr and two environments, mixtures had higher forage productions than solo kura clover (6.3, 5.7, and 6.0 Mg/ha for the Kentucky bluegrass, orchardgrass, and smooth bromegrass mixtures, respectively; compared to 5.2 Mg/ha for solo kura clover). The proportion of kura clover in mixtures increased from yr 1 to yr 2 and was constant from yr 2 to yr 3 (34, 58, and 57%, respectively). We conclude that kura clover has excellent potential as a long-term component of grass-legume mixtures regardless of the cutting height, harvest frequency or grass species, even though the proportion of kura clover in harvested forage was significantly greater with less frequent harvest and shorter cutting height of all mixtures.