• Title/Summary/Keyword: Legged

Search Result 288, Processing Time 0.031 seconds

A Method for Analyzing and Evaluating the Golf Swing Using the Force Platform Data (지면반력분석기를 이용한 골프 스윙의 분석 평가 방법)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.213-219
    • /
    • 2010
  • The purpose of this study is developing a method to analyze and evaluate a golf swing motion using the ground reaction force (GRF) data. Proper weight shifting is essential for a successful shot in golf swing and this could be evaluated by means of the forces between the feet and ground. GRF during the swing were measured from 15 low-handicapped male golfers including professionals. Four clubs(driver, iron 3, iron 5, and iron 7) were selected to analyze the differences due to different characteristics of club. Swings of each subject were taken using a high speed video camera and GRF data were taken simultaneously by two AMTI force platforms. To simplify the GRF data, forces of the three major component of GRF(vertical, lateral, anterior-posterior force) at 10 predefined temporal events for each trial were selected and the mean of each event were calculated and evaluated. Analyzed vertical GRF (VGRF) data could be divided into two different styles, one-legged and two legged. One-legged style shows good weight transfer to the target leg and most of the previous study shows this style as a typical pattern of good players. Therefore the data from the iron 5 swing obtained from 10 one-legged style golfers are provided as criteria for the evaluation of a swing.

A Comparision of the Limits of Stability at Different Body Positioning (체위에 따른 균형 안정성 한계의 비교)

  • Jeong, Dong-Hoon;Kwon, Hyuk-Cheol
    • Physical Therapy Korea
    • /
    • v.6 no.1
    • /
    • pp.35-46
    • /
    • 1999
  • The purposes of this study were to evaluate and compare the limits of stability(LOS) at different body positioning(standing and one leg standing) in normal 20 years of age. Fourty subjects participated in the study. Subjects comprised 20 males and 20 females who without neurologic, orthopaedic impairments and balance performance impaired. The LOS was measured at Two Feet Forceplate and One Leg Forceplate with BPM(Balance Performance Monitor) Dataprint Software Version 5.3. The subjects stood 4 inches between the feet at Two Feet Forceplate and stood one legged at One Leg Forceplate. In this study applied the paired t-test and independent t-test to determine the statistical significance of results at 0.01 and 0.05 level of significance. The results of this study were as follows: 1) The anteroposterior LOS significantly increased with one legged stance(p<0.05). 2) The mediolateral LOS significantly decreased with one legged stance(p<0.01). 3) There were significant difference posterior LOS in standing and anterior LOS in one legged stance according to sexual difference(p<0.05). 4) The mediolateral LOS was not significant difference between standing and one legged stance according to sexual difference(p>0.05).

  • PDF

A Study on Efficient Management of Bicycle Traffic Flow at Four-Legged Intersections (4지 신호교차로에서 효율적 자전거 교통류 처리방안 연구)

  • Mok, Sueng Joon;Kim, Eung Cheol;Heo, Hee Bum
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-189
    • /
    • 2013
  • PURPOSES: This study aims to suggest a proper left-turn treatment method for the bicycle traffic flow at four-legged intersections. METHODS: Four types of crossing methods are proposed and analyzed : (1) indirect left turn, (2) direct left turn, (3) direct left turn on a Bike Box, and (4) direct left turn on bike left turn lane. The VISSIM simulation tests were conducted based on forty-eight operation scenarios prepared by varying vehicle and bicycle traffic volumes. RESULTS : The results from the four-legged signalized intersections suggest that (1) the indirect left turn is appropriate when vehicle demand is high, (2) the direct left turn is efficient on most traffic situation but the safety is a concern, (3) the direct left turn on a Bike Box is appropriate when bicycle demand is high while vehicle demand is not, and (4) the direct left turn on a bike left turn lane is appropriate when both vehicle and bicycle demand are low. CONCLUSIONS : The direct left turn of bicycle provides more efficiency than the indirect left turn at the four-legged intersections but to apply the methods and to study more, advanced evaluation methods, related law, and insurance programs are needed.

Mobility and Agility of Multi-legged Walking Robot System (다족 보행 로봇 시스템의 이동성 및 민첩성)

  • Shim, Hyung-Won;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

Force Manipulability Analysis of Multi-Legged Walking Robot (다족 보행로봇의 동적 조작성 해석)

  • 조복기;이지홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

Motion Planning for Legged Robots Using Locomotion Primitives in the 3D Workspace (3차원 작업공간에서 보행 프리미티브를 이용한 다리형 로봇의 운동 계획)

  • Kim, Yong-Tae;Kim, Han-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • This paper presents a motion planning strategy for legged robots using locomotion primitives in the complex 3D environments. First, we define configuration, motion primitives and locomotion primitives for legged robots. A hierarchical motion planning method based on a combination of 2.5 dimensional maps of the 3D workspace is proposed. A global navigation map is obtained using 2.5 dimensional maps such as an obstacle height map, a passage map, and a gradient map of obstacles to distinguish obstacles. A high-level path planner finds a global path from a 2D navigation map. A mid-level planner creates sub-goals that help the legged robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. A local obstacle map that describes the edge or border of the obstacles is used to find the sub-goals along the global path. A low-level planner searches for a feasible sequence of locomotion primitives between sub-goals. We use heuristic algorithm in local motion planner. The proposed planning method is verified by both locomotion and soccer experiments on a small biped robot in a cluttered environment. Experiment results show an improvement in motion stability.

  • PDF

Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO (PSO를 이용한 테오얀센 기반의 보행로봇 다리설계)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.660-666
    • /
    • 2011
  • In this paper, we proposed a Particle Swarm Optimization(PSO) to search the optimal link lengths for legged walking robot. In order to apply the PSO algorithm for the proposed, its walking robot kinematic analysis is needed. A crab robot based on four-bar linkage mechanism and Jansen mechanism is implemented in H/W. For the performance index of PSO, the stride length of the legged walking robot is defined, based on the propose kinematic analysis. Comparative simulation results present to illustrate the viability and effectiveness of the proposed method.

Locomotion Control of 4 Legged Robot Using HyperNEAT (HyperNEAT를 이용한 4족 보행 로봇의 이동 제어)

  • Jang, Jae-Young;Hyun, Soo-Hwan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2011
  • The walking mobility with stability of 4 legged robots is the distinguished skills for many application areas. Planning gaits of efficient walking for quadruped robots is an important and challenging task. Especially, autonomous generation of locomotion is required to manage various robot models and environments. In this paper, we propose an adaptive locomotion control of 4 legged robot for irregular terrain using HyperNEAT. Generated locomotion is executed and analysed using ODE based Webots simulation for the 4 legged robot which is built by Bioloid.

Analysis on Boundary Condition for Standing Balance of Four-Legged Robots (4족 로봇의 정지 밸런스를 위한 경계 조건 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.673-678
    • /
    • 2011
  • This paper analyzes the standing balance of four-legged robots which are useful for delivering objects or investigating of information. For this, we specify an effective model of general four-legged robots and propose a boundary condition based on the standing stability of the four-legged walking. To verify such a standing balance, we consider some exemplary free motions at the standing mode of the robot and discuss on the robot's balance margin. The analysis specified in this paper will be applicable for effective balancing control of various quadruped robotic walking.

The Effects of Prolonged Sitting in a Cross-legged Posture on Pulmonary Function in Young Adults

  • Son, Sung-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Purpose: The impact of prolonged sitting in a cross-legged posture on physiological factors has not been extensively studied. We therefore attempted to evaluate whether prolonged sitting in a cross-legged posture affects pulmonary function in normal young adults. Methods: Twenty-four participants were recruited in this study, and the participants were equally allocated to the normal sitting posture group (NSP group, n=12) or sitting posture with the cross-legs group (SPCL group, n=12). The NSP group sat on chairs without crossing their legs for 30 minutes, and the SPCL group sat on the chair with legs crossed (the right knee on the left knee or the left knee on the right knee) for 30 minutes. The pulmonary function of the subjects was evaluated based on forced vital capacity (FVC), forced expiratory volume in one second (FEV1), FVC/FEV1, and peak expiratory flow (PEF) measured using a spirometer. Results: In the intra-group comparison, the SPCL group showed significant differences in FVC and FEV1 before and after sitting (p<0.05), but no significant differences (p>0.05) were observed in the NSP group. However, there were no significant differences between the two groups in the pulmonary function parameters measured before and after sitting (p>0.05). Conclusion: Our results confirmed that prolonged sitting in a cross-legged posture could have a negative influence on pulmonary function. Therefore, if a sitting position is maintained for a long time, the correct sitting posture should be maintained to prevent musculoskeletal disorders as well as to maintain normal pulmonary function.