• Title/Summary/Keyword: Legendre Pseudo-Spectral Method

Search Result 3, Processing Time 0.022 seconds

Trajectory Optimization for a Supersonic Air-Breathing Missile System Using Pseudo-Spectral Method

  • Park, Jung-Woo;Tahk, Min-Jea;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.112-121
    • /
    • 2009
  • This paper deals with supersonic air-breathing missile system. A supersonic air-breathing missile system has very complicated and incoherent thrust characteristics with respect to outer and inner environment during operation. For this reason, the missile system has many maneuver constraints and is allowed to operate within narrow flight envelope. In this paper, trajectory optimization of the missile is accomplished. The trajectory optimization problem is formulated as a discrete parameter optimization problem. For this formulation, Legendre Pseudo-Spectral method is introduced. This method is based on calculating the state and control variables on Legendre-Gauss-Lobatto (LGL) points. This approach helps to find approximated derivative and integration quantities simply. It is shown that, for this trajectory optimization, trend analysis is performed from thrust characteristics on various conditions so that the trajectory optimization is accomplished with fine initial guess with these results.

SPECTRAL LEGENDRE AND CHEBYSHEV APPROXIMATION FOR THE STOKES INTERFACE PROBLEMS

  • HESSARI, PEYMAN;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.109-124
    • /
    • 2017
  • The numerical solution of the Stokes equation with discontinuous viscosity and singular force term is challenging, due to the discontinuity of pressure, non-smoothness of velocity, and coupled discontinuities along interface.In this paper, we give an efficient algorithm to solve this problem by employing spectral Legendre and Chebyshev approximations.First, we present the algorithm for a problem defined in rectangular domain with straight line interface. Then it is generalized to a domain with smooth curve boundary and interface by employing spectral element method. Numerical experiments demonstrate the accuracy and efficiency of our algorithm and its spectral convergence.

A Comparative Study of Transcription Techniques for Nonlinear Optimal Control Problems Using a Pseudo-Spectral Method

  • Kim, Chang-Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.264-277
    • /
    • 2015
  • This article investigates various transcription techniques for the Legendre pseudospectral (PS) method to compare the pros and cons of each approach. Eight combinations from four different types of collocation points and two discretization methods for dynamic constraints, which differentiate Legendre PS transcription techniques, are implemented to solve a carefully selected test set of nonlinear optimal control problems (NOCPs). The convergence property and prediction accuracy are compared to provide a useful guideline for selecting the best combination. The tested NOCPs consist of the minimum time, minimum energy, and problems with state and control constraints. Therefore, the results drawn from this comparative study apply to the solution of similar types of NOCPs and can mitigate much debate about the best combinations. Additionally, important findings from this study can be used to improve the numerical efficiency of the Legendre PS methods. Three PS applications to the aerospace engineering problems are demonstrated to prove this point.