• Title/Summary/Keyword: Leg Length

Search Result 487, Processing Time 0.031 seconds

The Effects of Manual Therapy on Lower Extremity Alignment in Pelvic Malalignment

  • Jeon, Chang Keun;Han, Se Young;Yoo, Kyoung Tae
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.3
    • /
    • pp.1543-1548
    • /
    • 2018
  • The purpose of this study was to analyze the effects of manual therapy on lower extremity alignment in pelvic malalignment. The subjects were 20 adults with pelvic malalignment. They were divided into two groups: manual therapy group (n=10) and stretching exercise group (n=10). Each group performed the intervention two times per week for 4 weeks. The lower extremity alignment was measured by pelvic deviation, functional leg length inequality, and plantar pressure distribution, which were measured between pre- and post-test. In the result of pelvic deviation, there was a significant difference between the pre- and post-test of the manual therapy group and stretching exercise group. In the result of the functional leg length inequality, there was a significant difference between the pre- and post-test of the manual therapy group. In the result of plantar pressure distribution, there was a significant difference between the pre- and post-test of the manual therapy group. These findings suggest manual therapy improves the pelvic deviation, functional leg length inequality, and plantar pressure distribution in the pelvic malalignment.

A Case Study on the effects of Elephant Foot Method considering the rate of Changes in Tunnel Cross Section (터널 단면적 변화를 고려한 각부보강 영향성 평가)

  • Lee, Gil-Yong;Oh, Hyeon-Mun;Cho, Kye-Hwan;Oh, Jeong-Ho;Kim, Jong-Ju;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2018
  • In case of excavation of the tunnel under weak ground conditions, such as fault zone, leg pile reinforcement with the purpose of suppressing tunnel crown settlement and side wall displacement is commonly applied. There are convergence, crown settlement, leg settlement, and the axial force of leg as a main factor for confirming the safety of support considering the installation angle and length of leg pile reinforcement according to the increase in rate of change of tunnel cross-section. In particular, the influence of right corner settlement, among variables for safety confirmation during excavation, has been analyzed as the dominant factor in the most important priority management showing larger displacement tendency than the increase in rate of the cross-section. And, it was analyzed that the occurrence tendency of axial force on leg pile reinforcement showed the influence of behavior according to the friction support concept mechanism of the pile reinforcement rather than the increase in rate of tunnel cross-section, as it showed a small increase compared to the increase rate of the tunnel cross-section which did not show a great correlation from the viewpoint of the change of the axial force by the length of each leg pile reinforcement with regards to the change in rate of increase in tunnel cross-section. If a certain length of the leg pile reinforcement is selected based on the above grounds, even if the cross-section of the tunnel in poor ground condition is somewhat larger, it has been proved to be a more reasonable method considering the workability and economical efficiency by not extending the length of the leg pile reinforcement by force.

Surgery versus Nerve Blocks for Lumbar Disc Herniation : Quantitative Analysis of Radiological Factors as a Predictor for Successful Outcomes

  • Kim, Joohyun;Hur, Junseok W.;Lee, Jang-Bo;Park, Jung Yul
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.478-484
    • /
    • 2016
  • Objective : To assess the clinical and radiological factors as predictors for successful outcomes in lumbar disc herniation (LDH) treatment. Methods : Two groups of patients with single level LDH (L4-5) requiring treatment were retrospectively studied. The surgery group (SG) included 34 patients, and 30 patients who initially refused the surgery were included in the nerve blocks group (NG). A visual analogue scale (VAS) for leg and back pain and motor deficit were initially evaluated before procedures, and repeated at 1, 6, and 12 months. Radiological factors including the disc herniation length, disc herniation area, canal length-occupying ratio, and canal area-occupying ratio were measured and compared. Predicting factors of successful outcomes were determined with multivariate logistic regression analysis after the optimal cut off values were established with a receiver operating characteristic curve. Results : There was no significant demographic difference between two groups. A multivariate logistic regression analysis with radiological and clinical (12 months follow-up) data revealed that the high disc herniation length with cutoff value 6.31 mm [odds ratio (OR) 2.35; confidence interval (CI) 1.21-3.98] was a predictor of successful outcomes of leg pain relief in the SG. The low disc herniation length with cutoff value 6.23 mm (OR 0.05; CI 0.003-0.89) and high baseline VAS leg (OR 12.63; CI 1.64-97.45) were identified as predictors of successful outcomes of leg pain relief in the NG. Conclusion : The patients with the disc herniation length larger than 6.31 mm showed successful outcomes with surgery whereas the patients with the disc herniation length less than 6.23 mm showed successful outcomes with nerve block. These results could be considered as a radiological criteria in choosing optimal treatment options for LDH.

Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

  • El-gamal, Amr R.;Essa, Ashraf
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

Influence of Cu[II] on the Growth of Korean Axolotl, Hynobius leechii (동이온이 도롱뇽유생의 성장에 미치는 영향)

  • Park, Jin Ho;Won Hark Park;Sang Ock Park
    • The Korean Journal of Ecology
    • /
    • v.6 no.2
    • /
    • pp.106-113
    • /
    • 1983
  • The growth of Korean axolotl., Hynobius leechii, was analyzed in natural water as control group and in six copper ion groups contaminated by 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 ppm of copper ion. The copper ion checks the growth of the axolotl. The axolotl was not survived during 30 days in the copper ion of 0.3ppm, and, in the 0.4ppm the axolotl was not survived during 10 days after hatch. The growth of head width and body length show a convexing increase pattern, while that of hind leg shows a concaving increase pattern. The copper ion checks the development of hind leg. In the growth quantity of head width, body length and hid leg, that of natural water show the most rapid increase pattern, and copper ion groups of 0.1, 0.2, 0.3ppm follow in that order. The coefficient of relative growth($\alpha$) of control group is the greater value, and the copper ion groups of 0.1, 0.2, 0.3ppm follow in that order. The contaminated groups show the negative allometry in the relative growth of the containated groups to the natural water. Body length shows positive allometry, while hind leg shows negative allometry in the relative growth to head width.

  • PDF

Limb Salvage Surgery after Removal of Infected Tumor Prosthesis with Equalization of Leg Length (감염된 종양 대치물 제거와 하지 단축 보정 후 시행한 사지 구제술 - 증례 보고 -)

  • Kwon, Young-Ho;Kim, Jae-Do;Chung, So-Hak;Cho, Yool
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.12 no.2
    • /
    • pp.141-147
    • /
    • 2006
  • In 1996, a nine-year-old girl was treated with recycling autograft after wide resection of the distal femoral osteosarcoma. The leg lengthening and revision with growing tumor prosthesis were performed due to limb leg discrepancy and epiphyseal problem. However, deep infection developed after operation, and a temporary spacer with cement and Ender nail was inserted. After infection was controlled completely, the final leg lengthening was performed with mono-external fixator for limb length discrepancy (10 cm). Lastly, Tumor prosthesis was reinserted to preserve the joint function.

  • PDF

Safety Enhanced Signal Phase Sequence Design of a Rotary with Five Leg Intersection (5지 신호교차로에서의 안전을 고려한 신호현시 설계)

  • 박재완;김진태;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.23-29
    • /
    • 2002
  • Five and more leg intersections have been still in operation in many urban areas. The number of conflicts in five leg intersection is more than four leg intersection. The signal timing design in the five leg intersection should be performed not only to reduce delay but also to increase safety. This paper suggests safety enhanced signal phase sequence design of a rotary with five leg intersection such as phase sequence minimizing the number of conflict points at the rotary with five leg intersections and the phase-length-design procedure by utilizing the Traffic Network Study Tool(TRANSYT). Field data was collected from Gonguptap five leg intersection in Ulsan and TRANSYT-7F was applied for signal timing design model. Optimal signal phase length and sequence of TRANSYT-7F is rearranged based on the Principal of "two moving traffic flows per phase". In conclusion, proposed signal phase design increased delay by 6.2% compared with the optimal signal phase of TRANSYT-7F. However, it could decrease the number of conflict in the five leg intersection by 61.5%.

Biomechanical changes in lower quadrant after manipulation of low back pain patients with sacroiliac joint dysfunction (요통환자의 엉치엉덩관절 기능부전에 대한 도수교정 후에 하지의 생체역학적인 변화)

  • Oh, Seung-Gil;Yoo, Seung-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.893-906
    • /
    • 2001
  • The purposes of this study were to compare pelvic tilt. range of motion(ROM) of hip rotation, and leg length difference before and after manipulation and to investigate correlation between changes of each variables after manipulation of sacroiliac pint in 31 low back pain patients(11 males, 20 females) with sacroiliac pint dysfunction. The sacroiliac pint of patients was manipulated on the side of anterior pelvic tilt, using the technique described by Stoddard(1962) and Greenmann (1996). I used this technique because it usually eliminated sacroiliac Pint dysfunction in one treatment session. SPSS for window computer system was used to analyze the data. Also t-test was performed for comparison of the variables before and after manipulation, and Pearson product-moment correlation analysis and regression analysis were performed for changes of each variables after manipulation. The result were as follows: 1. The pelvic tilt after manipulation was significantly decreased(mean=$2.79^{\circ}$) compared with the pelvic tilt before manipulation(p=.001). 2. The PROM of hip internal rotation ipsilateral to anterior pelvic tilt after manipulation significantly decreased (mean = $1.88^{\circ}$) compared with hip internal rotation before manipulation (p=.008). The PROM of hip internal rotation ipsilateral to posterior pelvic tilt after manipulation significantly increased(mean = $1.29^{\circ}$) compared with hip internal rotation before manipulation (p=.029). 3. The PROM of hip external rotation ipsilateral to anterior pelvic tilt after manipulation significantly increased(mean=$2.42^{\circ}$) compared with the hip external rotation before manipulation(p=$2.42^{\circ}$) compared with the hip external rotation ipsilateral to posterior pelvic tilt after manipulation significantly decreased(mean = $1.84^{\circ}$) compared with the hip external rotation before manipulation (p=.008). 4. Leg length difference after manipulation significantly decreased(mean=2.15 mm) compared with leg length difference before manipulation (p=.008). Regression analysis revealed that a fair correlation was found between change in leg length difference and change in anterior pelvic tilt after manipulation(p=.009). 5. Pearson product-moment correlation coefficient was used to assess differences of the variables after manipulation. A fair correlation was found between change in leg length difference and change in anterior pelvic tilt after manipulation(r=.462, p<.01). A fair correlation was found between change in anterior pelvic tilt and change in hip internal rotation ipsilateral to anterior pelvic tilt(r=.397, p<.05) and between change in anterior pelvic tilt and change in hip external rotation ipsilateral to anterior pelvic tilt(r=.516, p<.01). A fair correlation was found between change in posterior pelvic tilt and changes in hip internal rotation ipsilateral to posterior pelvic tilt (r=.441, p<.05) and between change in posterior pelvic tilt and change in hip external rotation ipsilateral to posterior pelvic tilt(r=.361, p<.05). A fair correlation was found between change in hip internal rotation ipsilateral to anterior pelvic tilt and change in hip external rotation ipsilateral to posterior pelvic tilt(r=.388, p<.05) and between change in hip internal rotation ipsilateral to posterior pelvic tilt and change in hip internal rotation ipsilateral to anterior pelvic tilt(r=.426. p<.05).

  • PDF

Transient Effects of Calf Muscle Fatigue and Visual Control on Postural Balance During Single Leg Standing

  • Han, Jin-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.67-71
    • /
    • 2017
  • PURPOSE: Muscle fatigue is a cause to change proprioception. The purpose of this study was to investigate the effects of calf muscle fatigue and visual control on postural balance during single-legged standing in healthy adults. METHODS: Nineteen healthy adults (male) were participated in this study (mean age: 24.36 years; mean height: 171.32 cm; mean weight: 64.58 kg). The postural balance (sway length, sway area, sway velocity of COG displacement) was measured by Balance Trainer System (BT4) in before and after calf muscle fatigue feeling in single legged stance. In this study, repetitive single-legged heel rise test was used to induce fatigue of the calf muscle. Paired t- test was used to compare the postural balance between before and after calf muscle fatigue. Data of subjects were analyzed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Level of significance was set to .05. RESULTS: The sway length, sway area, sway velocity of COG (center of gravity) displacement after calf muscle fatigue feeling was significantly increased compared to before calf muscle fatigue feeling during single leg standing both eye open and close conditions (p<.05). CONCLUSION: This study suggested that calf muscle fatigue feeling has affected on postural balance when standing one leg both eye open and close conditions and postural control was disturbed by muscle fatigue and visual feedback in single leg standing.

A Study on the Design Factor for Increasing the Dynamic Fit of Slacks (슬랙스의 동적 적합성 향상을 위한 설계 요인 연구)

  • Cho, Sung-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.2
    • /
    • pp.162-180
    • /
    • 2008
  • The purpose of this study is to find the basic design factors that affect the changes in body surface lines caused by lower limb movements, thereby resulting in slacks that fit well regardless of whether the human form is static or in motion. Using unmarried female university students aged 18-24 as subjects, a total of 32 body surface lines (15 body surface total lines and 17 body surface segment lines) were measured in one static and 9 movement poses, The analysis first involved the calculation of the expansion and contraction rates per body part in body surface line in 9 lower limb movements, Second, a factor analysis was conducted using the expansion and contraction rates of these changes in body surface line. The results of this study are as follows, According to the factor analysis, basic design factors that affect changes in body surface lines comprised 8 types of factors as illustrated in fig, 2-fig, 9, which explained 79.2% of total variate for the variables studied, Factor 1, comprising the lower segment of center back leg line, center front leg line and inner leg line, and lower limb girth except midway thigh girth and ankle girth below hip girth, accounted for 30.3% of total variance, Factor 2, comprising waist girth, the total and upper segment of center back leg line and center tront leg line, and front and back segment of crotch length, explained 17.4% of total variance, Factor 3, the total and upper segment of lateral leg line at the center, accounted for 56.5% of total variance in accordance with Factors 1, 2, and 3, Factor 4 was the contracting upper part of lower leg between legscye girth and midway thigh girth, Factor 5 comprised the total and upper segment of inner leg line and posterior knee girth, Factor 6 was the total crotch length, Factor 7 was the ankle girth, Factor 8 was the abdomen girth.