• Title/Summary/Keyword: Left turn lane

Search Result 73, Processing Time 0.02 seconds

A study on Left turn Capacity by Bay Length (Bay길이에 따른 좌회전 용량산정에 관한 연구)

  • 김정례;김기혁
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.31-39
    • /
    • 2002
  • The primary objective of this study is to develop a reliable method for estimating the left turn capacity at the signalized intersection. This study is performed during periods of congestion. Multi left turn lane(bay lane and exclusive lane) approaches are examined. When more than one left turn lane exists, traffic volumes are not distributed equally over each lane. The fundamental approach taken in this study is measuring headways on left turn lanes with altering the bay length from 20m to 120m. Left turn lane is divided into 3 sub-sections in this study. These are SLP section(start-up lost time Period), SFP section(saturation flow period), LSP section(lane selection period). Saturation flow rates are evaluated for each sub section periods. As a results of analysis, it has been confirmed that the left turn capacity can be estimated by left turn bay length and effective green time for left turn. The left turn bay length adjustment factor is suggested in this study.

A Study on Backing Up the Bus Stop Line according to the Left Turn at Intersection on the Median Bus Lane (중앙버스전용차로의 교차로 좌회전에 따른 버스 정지선 후퇴에 관한 연구)

  • oh Hoon;Lee Jin-woo;Lee Young-ihn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.75-83
    • /
    • 2004
  • July 1, 2004 Seoul Metropolitan city is operating the Median Bus Lane System on Gangnam Main Street, Seongsan-Susaek-ro (Road) and Dobong- Mia-ro (Road) as one of the systematic reorganizations in public transportation. It has been assumed that there was an improvement in the speed of bus considering that the Median Bus Lane System practiced on Cheonho-daero (Main Street) since 1996 have had 35km/h on the average. If the Median Bus Lane goes into effect, there is a problem with the left turn on the crossroad. The buses go on the existing first lane so that the left fuming cars cannot help but turn left on the second lane. In case that the Median Bus Lane is put into practice, the left turn on the crossroad should not be allowed. However, if the left turn is not permitted on the crossroads in the aforementioned main streets, neighboring residents will complain about it and there will be some difficulties in finding other detour. On the premise that the prevalent left turn on the crossroads is allowed while the Median Bus Lane is being put into practice, this study suggests the separation of a stop line between buses and other vehicles as a way of fuming left in a safe manner and a way to calculate the appropriate distance.

  • PDF

Estimation of Unprotected Left-Turn Saturation Flows (비보호 좌회전 포화유률 추정)

  • 김경환
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.236-244
    • /
    • 1998
  • When the capacity and traffic operation at signalized intersections are analyzed in Korea, the unprotected left-turn saturation flow rate, which is an important parameter for the analysis, is estimated form the USHCM model. thus, exact analysis of the left-turn is not possible because of the difference of traffic environments between two contries. In order to improve this problem, it is undertaken in this study to develop techniques for the estimation of unprotected left-turn saturation flows based on Korean drivers' data. As study intersections, signalized or unsignalized intersections on the 6, 4 and 2 lane streets are selected. the data for the saturation flow measurement and gap-acceptance behavior analysis are inputed in a notebook computer on the sites. The critical acceptance gaps of the 6, 4, and 2 lane streets are analyzed to be 6.0 secs, 4.6 secs, and 4.3 secs respectively. the average minimum headway of the left-turn vehicle was observed to be 2.6 secs. As the model to estimate unportected left-turn saturation flows, the drew model is recommended for 6 and 4 lane streets, and a graph is suggested for the 2-lane street. As the values of the parameters of the Drew model, the 2.6 secs of this study is recommended for the average minimum headway of the left-turn. But, the critical acceptance gap varies according to the approach speed of opposing traffic and driver population, it requires field survey to measure the gap of an intersection; however, the values of the gaps studied in this study may be used for the general intersections in urban area in Korean.

  • PDF

Simulated Operational Efficiency Analysis of Special Roundabouts (시뮬레이션 프로그램을 이용한 특수유형 회전교차로의 운영 효율성 분석)

  • Lim, Jin Kang;Park, Na Young;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.81-90
    • /
    • 2017
  • PURPOSES : The goal of this study is to analyze the operational efficiencies of special roundabouts using simulated programs. METHODS : This study primarily focuses on comparing the delays and traffic flow disturbances occurring at special roundabouts. In this study, the operational efficiencies of 450 scenarios (5 roundabout types ${\times}$ traffic volumes ${\times}$ directional ratios ${\times}$ measures) are analyzed according to the corresponding delays and traffic flow disturbances using VISSIM and SSAM. RESULTS : The main results are as follows: 1) the Hamburger roundabouts are determined to yield the least common-type delays, 2) the amount of delays at Turbo and Flower roundabouts with respect to relatively increased right-turn-type delays, in addition to the amount of delays at the Left-turn slip-lane roundabout with respect to relatively increased left-turn-type delays, are found to be reduced as compared to the common-type delays. Lastly, common- and increased right-turn-type traffic flow disturbances at the Turbo roundabout and increased left-turn-type traffic flow disturbances at the Left-turn slip-lane roundabout are determined to be the most infrequent. CONCLUSIONS : This study comparatively analyzes five roundabout types: standard, Flower, Turbo, Hamburger, and Left-turn slip-lane. The effectiveness of roundabouts can increase according to given traffic volume, directional ratio, and measure of effectiveness.

Traffic Signal Timing at Interconnected and Semi-Protected-Left-Turn Intersections for Energy Saving (에너지절약을 위한 상호련결된 반보호좌회전 교차로의 신호시간설계)

  • 김경환
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.1
    • /
    • pp.25-40
    • /
    • 1990
  • This study was undertaken to develop a traffic signal timing method for interconnected and semi-protected-left-turn intersections(the intersections which have left-turn signal but not exclusive left-turn lanes) on four-lane streets for energy saving and to computerize the method for the practical use. For this study, a probability model which could estimate the utilized time of the shared left-turn lane by through traffic during green period was developed based on field studies. The two left-turn treatments, leading and lagging left-turns, were tested for the intersections, and it can be concluded that the leading left-turn was more efficient for the normal urban streets on which through traffic is major traffic. Adopting the leading left-turn macro-models to estimate vehicular average delay and proportions of vehicles stopped at the intersections were developed. Using the two models as well as the idling fuel consumpution rate and the excess fuel consumption per stop-go speed change, a traffic signal timing method for the intersections for energy saving was developed and computerized. The method can be used for more than four-lane streets and for other measures of effectiveness such as minimum delay, minimum stop rates, etc.

  • PDF

A Study on Efficient Management of Bicycle Traffic Flow at Four-Legged Intersections (4지 신호교차로에서 효율적 자전거 교통류 처리방안 연구)

  • Mok, Sueng Joon;Kim, Eung Cheol;Heo, Hee Bum
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-189
    • /
    • 2013
  • PURPOSES: This study aims to suggest a proper left-turn treatment method for the bicycle traffic flow at four-legged intersections. METHODS: Four types of crossing methods are proposed and analyzed : (1) indirect left turn, (2) direct left turn, (3) direct left turn on a Bike Box, and (4) direct left turn on bike left turn lane. The VISSIM simulation tests were conducted based on forty-eight operation scenarios prepared by varying vehicle and bicycle traffic volumes. RESULTS : The results from the four-legged signalized intersections suggest that (1) the indirect left turn is appropriate when vehicle demand is high, (2) the direct left turn is efficient on most traffic situation but the safety is a concern, (3) the direct left turn on a Bike Box is appropriate when bicycle demand is high while vehicle demand is not, and (4) the direct left turn on a bike left turn lane is appropriate when both vehicle and bicycle demand are low. CONCLUSIONS : The direct left turn of bicycle provides more efficiency than the indirect left turn at the four-legged intersections but to apply the methods and to study more, advanced evaluation methods, related law, and insurance programs are needed.

A Study on Left-turn Queues Analysis using Queueing Theory under Permissive Left-turn Signal System (비보호좌회전 신호체계운영에 따른 좌회전 대기행렬분석에 관한 연구)

  • Kim, Kap Soo;Jung, Ja Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.663-669
    • /
    • 2011
  • In this study, the optimal length of left-turn lane in permissive left-turn signal system at the signalized intersection which has a left-turn bay is estimated. It is a simulation analysis using the queueing theory that estimate the length of left-turn lane. Traffic density conform to the standards of operating a permissive left-turn system of the Practical Manual Traffic Safety Facilities. And each of a left-turn arrival rate, a left-turn service rate, left-turn average queueing time, for green time average queueing vehicle, for red time average queueing vehicle and average queueing vehicle cycle is calculated. As a result of this study, we would learn how much the space should be secured at the signalized intersection which has a left-turn bay. The methodology using the queueing theory to work out the optimal length of waiting lane in the permissive left-turn signal system was presented.

Estimating Utilization Factor of Left Turn Lane for Through Traffic, Intersection Capacity, and Optimum Signal Timings (직진교통의 좌회전차선 이용률 추정과 교차로용량 및 최적신호등시간 산정)

  • 도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.1 no.1
    • /
    • pp.56-63
    • /
    • 1983
  • Intersection control has dual-purposes; increasing capacity and reducing delay. The primary concern of efficient intersection control under oversaturated condition as in Korea is to increase capacity. Prevailing intersection operation technique permits thru traffic to utilize left turn lane, because the intersection without left turn pocket has left turn signal interval. In this situation, it seems not to be valid to calculate capacity, delay, and signal timings by conventional methods. By critical lane technique, capacity increases as cycle length increases. However, when thru traffic utilize LT lane, the capacity varies according to LT volume, LT interval as well as cycle length, which implies that specific cycle length and LT interval exist to maximize capacity for given LT volume. The study is designed is designed to calculate utilization factors of LT lane for thru traffic and capacities, and identify signal timings to yield maximum capacity. The experimental design involved has 3 variables; 1)LT volumes at each approach(20-300 vph), 2)cycle lengths (60-220 sec), and 3)LT intervals(2.6-42 sec) for one scenario of isolated intersection crossing two 6-lanes streets. For LT volume of 50-150 vph, capacity calculated by using the utilization factor is about 25% higher than that by critical lane method. The range of optimum cycle length to yield maximum capapcity for LT volume less than 120 vph is 140-180 sec, and increases as LT volume increases. The optimum LT interval to yield maximum capacity is longer than the intrval necessary to accommodate LT volume at saturation flow rate.

  • PDF

Capacity and Saturation Flow Rate of Permissive Left-Turn Lane: in case for the Exclusive Use of Permissive Left-Turn Movements (비보호(非保護) 좌회전(左回轉)의 간격수락(間隔受諾)과 용량(容量) 및 보정계수(補整係數)에 관한 연구)

  • Do, Cheol Ung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1273-1279
    • /
    • 1994
  • There are 3 cases that only permissive left-turn(PLT) vehicles use the possible lane for PLT. In these cases, left turn and through movements can not be included in the same lane group, hence saturation flow rate and left turn adjustment factor of PLT are obtained separately from through movement. In capacity analysis procedures at signalized intersection with PLT phasing, PLT capacity should be known to discriminate among 3 cases stated above. The capacity is directly used not only to get saturation flow rate and left turn adjustment factor, but as a threshold for the feasibility of PLT control. This study calculated through field data the critical gap and minimum headway of left turn which affect the PLT capacity. The capacity was obtained by using theoretical models, which consequently could be used to calculate the saturation flow rate and left turn adjustment factor.

  • PDF

A Study on Installation of U-Turn Lane for Efficient Operation of Left Turn at Signalized Intersections (신호교차로 좌회전 효율적 처리를 위한 유턴차로 설치방법 연구)

  • Park, Chahgwha;Yoon, Byoungjo;Kang, Bongsuk
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.597-606
    • /
    • 2015
  • Until now, u-turn lane installation methods have been studied variously. But, There is no specific standard yet. This study ranges are commercial area in Incheon metropolitan city through field investigation and presents specific design standard for efficient operation of left turn using a field data through calculating relevant permitted u-turn lane length and minimum separation distance from the front intersection to starting point of permitted u-turn lane in urban signalized intersections in commercial area. Relevant permitted u-turn lane length is found to be 32m and minimum separation distances from the front intersection to starting point of permitted u-turn lanes are 72m, 40m, 24m in case of 1 left turn lane, 2 left turn lanes and 3 left turn lanes respectively. By comparing result values and field data, they had a large difference under the similar situations in their lengths. This result is caused of no specific standard about design of u-turn lanes. If results of this study applied to design of u-turn lanes, signalized intersections in urban commercial areas would be operated more safety and efficiently.