• Title/Summary/Keyword: Lee-Side Erosion

Search Result 35, Processing Time 0.025 seconds

Characteristics and classification of landform relieves on mountains and valleys with bedrock types (기반암별 산지와 곡지의 지형 기복 특성과 유형)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.1-17
    • /
    • 2014
  • This study analyzed characteristics of landform relieves on 12 bedrock whole(W) areas and 24 mountain(M) and valley(V) areas. Based on this result, characteristics and relations between bedrocks and landform relief were classified as follows. 1) gneiss-height M and granite-height W, M, V areas show active stream incision for uplift. However these areas have relatively low relief and grade compared to high altitude, because effect of denudation don't pass on whole slope. 2) gneiss-height W, V, gneiss-mid M, schist M, granite-mid M, volcanic rock W, M, sedimentary rock-height(conglomerate) W, M, V, sedimentary rock-mid (sandstone and shale) M, limestone W, M areas have active stream erosion and mass movement, but landform relieves are on the high side, because these have resistant bedrock and geological structure against weathering and erosion. 3) gneiss-mid W, V, schist W, V, granite-mid W, V, volcanic rock V, sedimentary rock-mid W, V, sedimentary rock-low(shale) M, limestone V areas landform relieves are on the low side, because these have weak resistance and active weathering, mass movement, erosion, transportation and deposit. 4) gneiss-low W, M, V, granite-low W, M, V, sedimentary rock-low W, V areas landform relieves are very low, because these don't have active erosion and mass movement as costal area with low altitude.

Prediction of Topographic Change in the Estuary of Nakdong River and Analysis of Its Contribution by External Force Condition (낙동강 하구 지형변화 예측 및 외력조건에 따른 기여도 분석)

  • Kim, Kang-Min;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • It is very important to understand the mechanism of estuary topographic changes for the study of estuary management and treatment methods. In this study, the effects from the land-side, such as rainfall, river discharge, sediment discharge, and sea side, such as tide, tidal current, wave and surface sediments related to the topographic changes of the Nakdong river estuary were investigated and analyzed. Based on the analyzed data, topographic modeling was performed to analyze the topographic change and contribution of external force conditions. As a result of numerical modeling, the topographic change showed that erosion that predominates in the water directly affected by the discharge of the estuary barrage. The deposition predominates in the indirectly affected tideland. As sediments moved along the water way being sorted and distributed by the wave, the deposition predominated in the front of the barrier island. Compared with the deposition dominance, which is the result of the topographic change prediction, the impact of each external force condition gives larger erosion. However, the combined impact of each external force condition showed deposition dominant. Therefore, the topographic changes of the Nakdong river estuary are considered to be the result of various complex external factors. The impacts of each external force condition show the different contribution to each comparison area. These results should be considered when establishing the estuary management method. It must be understood that this is the result of complex interactions.

Scour development around an artificial cylinder on tidal sand ridg in gyeonggi bay, Korea (경기만 조류성 사퇴위에 설치한 원등물체 주변 침식 및 퇴적현상)

  • Choi, J.H.
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.10-20
    • /
    • 1992
  • 강조류하의 인공 구조물 주변 해저 침식 및 재퇴적 현상을 연구하기 위하여 1987년 8월 24일 부터 9월 26일 까지 경기만에 발달한 조류성 사퇴위에서 현장 실험을 실시하였다. 인공구조물(원통 물체) 주변에 발달한 침식 구조는 전체적으로는 타원형으로 접시모양을 하고 있으며, 후류 및 이차류에 의한 복합 침식작용에 의한 것으로 분석되었다. 아울러 연속적인 침식구조 크기 측정자료를 이용 산술적으로 침식율$(1.5-20m_3/day)$및 재퇴적율(0.13-0.18gr/cm/sec)를 추정하였다.

  • PDF

Cause Analysis of Dam Body piping Failure -Centering on the Example of Seungam Reservoir Failure- (제당 PIPING 결궤 원인분석 - 성암제 붕괴 중심으로 -)

  • Lee, In-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.344-350
    • /
    • 2001
  • Piping is a phenomenon where seeping water progressively erodes or washes away soil particles, leaving large voids (Pipes led to the development of channels) in the soil. Piping failure caused by heave can be expected to occur on the downstream side of a hydraulic structure such as fill dams when the uplift forces of seepage exceed the downward forces due to the submerged weight of the soil. The way to prevent erosion and piping and to reduce damaging uplift pressures is to use a protective filter or to construct cutoff wall/imperious blanket. Therefore, all the hydraulic structures faced/with soil materials should be taken the safety against piping into consideration.

  • PDF

Study on the applicability of bentonite-mixed dredged sea sand as a water-proof material (벤토나이트를 혼합한 준설해사의 차수재 활용성)

  • Kim, Seo-Ryong;Lee, Duc-Won;Kong, Kil-Yong;Woo, Jeon-Yong;Kim, Hyun-Tae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.175-178
    • /
    • 2003
  • There is a case to use dredged-sea sand as a filling material because of difficulty of obtaining required filling material for tideland reclamation project from the land. At this time, side slope erosion is occurred because the precipitation falling to the top of bank acts as infiltration water when it pass through inside of the semi-permeable filling section. This study has confirmed the declining effect of permeability by conducting permeability test to the condition of mixing of bentonite to the dredged sea-sand. And also this study has confirmed that the above processed-soil could be used as a water-proof layer to protect infiltration of water through the infiltration flow analysis.

  • PDF

Geomorphological Environment of Suwon Basin (수원 분지의 지형 환경)

  • Kee, Keun-Doh;Lee, Sang-Whan
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.2
    • /
    • pp.300-312
    • /
    • 2004
  • The geomorphological environment of Suwon Basin consists of two great elements: mountains which surround the basin and plains and low relief hills by differential erosion of granitic area. Nothern and eastern parts of the basin surround with gneissic mountains(Mt. Kwangkyo), southern and western parts of the basin with granitic mountains(Mt. Chilbo, etc). The basin developed on granitic saprolites is composed of two types of sub-order geomorphic elements: flood plains alongside four river(Whangkuji-chon, Seoho-chon, Suwon-chon, Wonchonri-chon) and aligned hills and mounts between the river side plains. While the low down lands provided the spatial condition for the extention of downtown of Suwon, the gneissic mountains have played the positive roles by high ecological dam effects with stable supply of water and purification of air, etc.

  • PDF

Sediment Control at Water Intake Structures in a River

  • Son, Kwang-Ik;Lee, Jae-Joon;Han, Kun-Yeon;Lee, Eul-Rae
    • Korean Journal of Hydrosciences
    • /
    • v.10
    • /
    • pp.73-83
    • /
    • 1999
  • The intake towers of Buyeo W.T.P. in Keum river have being suffered from the sedimentation problems since the beginning of the operation. Impellers of the intake pumps have to the frequently changed due to the serious surface erosion. Thousands tons of sands are entrapped in the intake towers and equalization chambers of W.T.P. every year. Site surveying and numerical analysis were carried out to suggest an appropriate solution by understanding the general sedimentation regime of Keum river and causes of the sedimentation in the intake towers. Origin of the sediment could be found by the desk and site inspections. The validity of the used numerical models was examined by comparisons between the calculated bydraulic values and the measured ones during the specific periods. The design flow rate for the prediction of the future sedimentation regime of the rever was studied. The efficiency of the sediment control measures was also examined with the verified numerical models. Finally, it was found that the best solution could be a combination of three sediment control measures; increase the clearance between river bed and inlet, construct jetties at 2 kilometers upstream from the intake towers, and put vanes at the right side of the intake towers.

  • PDF

Numerical Sensitivity Analysis on Hydraulic Characteristics by Dredging in Upstream of Abrupt Expansion Region (급확대 구간에서 준설영향으로 인한 상류 수리특성 변화에 대한 민감도 분석)

  • Jeong, Seok Il;Ryu, Kwang Hyun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.46-52
    • /
    • 2017
  • Sediment exchange in river has been affected by artificial changes such as dredging and abnormal climate changes like intense rainfall. Over last decades in Korea, there were many constructions, restoration or rehabilitation in rivers. Therefore, deposition and erosion become more actively occurred than before, which may threaten the river safety such as flood defense. For safety's sake, the dredging of river bed, which is considered as the most typical measure, has been increased to extend hydraulic conveyance compared with previous conditions. However, since it might change the sediment mechanism, there would be another risk at which unexpected side effects such as headward erosion could be occurred. Particularly, sedimentation at abrupt expansion region is able to lead to hydraulic characteristics like water elevation in the upstream region in the beginning of dredging, which, however, has been barely studied in this field. Therefore in this study, the relationship between sediment mechanism at dredging section and hydraulic characteristics in upstream region were presented through numerical simulations in the idealized abruptly widen channel using Delft3D. The ideal channel of 2,000 m length with each side angle of 45 degrees at abruptly widen expansion region was employed to consider the sediment angle of repose. The sensitivity analysis was performed on the dimensionless factors consisted of upstream and downstream depths($h_u$, $h_d$), width($w_u$, $w_d$), water level(H), flow rate(Q) and discharge of sediment($Q_s$). And the sedimentation amount at dredging and the upstream hydraulic characteristics were investigated through that analysis. It showed that $h_d/h_u$, $H/h_u$ and $w_d/w_u$ were more influential in sequence of effect on sedimentation amount, while $h_d/h_u$, $w_d/w_u$ and $H/h_u$ on upstream region. It means that $h_d/h_u$ was revealed as the most significant factors on sedimentation, also it would most highly affect the rising of water level upstream.

Seasonal Variation of Surface Sediments and Accumulation Rate on the Intertidal Flats in Hampyong Bay, Southwestern Coast of Korea (함평만 조간대의 표층퇴적물과 집적률의 계절변화)

  • Ryu, Sang-Ock;You, Hoan-Su;Lee, Jong-Deock
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Grain-size distribution and accumulation rate of surface sediments on the tidal flats in Hampyong Bay, southwestern coast of Korea, were investigated in a sequential interval of 2 months for the period of 27 months (1994. 10~1996. 12). Seasonal variation of grain-size distribution is prevalent on the Shimock tidal flat in the southern side of the innerbay, rather than the Anarc tidal flat in the northern side around the baymouth. This variation, in particular, more distinctive in the areas around the both high and low tide water levels. The Shimock tidal flat shows typical seasonal variation of sedimentary processes, expected under monsoonal climate. Deposition of tine-grained sediments in summer dominates over erosion in winter, resulting in an annual accumulation rate of 3.7 mm/yr. In contrast, sedimentary processes on the Anarc tidal flat is abnormal that have experienced slight deposition of fine-grained sediments in the winter and severe erosion in the summer time, showing a negative annual accumulation rate of -49.6 mm/yr. Erosional processes in this area is interpreted due mainly to change of strength and direction of tidal currents, caused by the artificial construction of dyke for reclamation in the mid-tidal flat. As a result, It is immoderate to conclude whether sedimentary processes of Hampyong Bay is erosional or depositional at current situation. Further studies on sedimentary budget at the entrance to the bay are needed.

  • PDF

Relation between the Pollution Level of the Atmosphere and that of the Soil in the Vicinity of Roads (도로변 대기오염도와 토양오염 수준의 관계)

  • Lee, Jin-Ha;Park, Gi-Hark;Jeoung, Young-Do
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.494-500
    • /
    • 1996
  • To investigate the relationship between the atmospheric pollution level and the pollution level of soil adjacent to the roadside in Suwon suspended particles and soil samples were collected in August to October 1993, and analyzed by AAS and ICP. The Ca, K, Mg concentration in atmosphere were observed as high level and assumed that it was effected by the acid-rain originated from the erosion of concreate vicinity to the roadside, and the Pb, Zn concentration were higher at outer area than that of central area. Hazardous heavy metal (Cu, Pb, Zn) concentrations in soil were observed as high level at all sampling sites. The relationship between the heavy metal concentrations in the atmosphere and those in the soil were analyzed, by using the correlation coefficient value(r) and the result was appeared similarly. And this study indicated that the atmospheric pollution affect the level of the soil pollution adjacent to the road side.

  • PDF