• 제목/요약/키워드: Lee clouds

검색결과 338건 처리시간 0.028초

지표 에너지 수지에 미치는 구름의 복사 역할 (Radiative Role of Clouds on the Earth Surface Energy Balance)

  • 홍성철;정일웅;김형진;이재범;오성남
    • 한국환경과학회지
    • /
    • 제16권3호
    • /
    • pp.261-267
    • /
    • 2007
  • In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

A Simple Simulation of Parabola-Shaped Clouds in the Lee of a Low Bell-Shaped Mountain Using the ARPS

  • Lee, Seung-Jae;Lee, Hwa-Woon;Kang, Sung-Dae
    • 한국환경과학회지
    • /
    • 제16권5호
    • /
    • pp.541-548
    • /
    • 2007
  • A three-dimensional linear model and the Advanced Regional Prediction System (ARPS) were used to simulate parabola-shaped disturbances and clouds in the lee of a bell-shaped mountain. The ARPS model was compared in the x-y plane against the linear model's analytic solution. Under similar conditions with the linear theory, the ARPS produced well-developed parabola-shaped mountain disturbances and confirmed the features are accounted for in the linear regime. A parabola-shaped cloud in the lee of an isolated bell-shaped mountain was successfully simulated in the ARPS after 6 hours of integration time with the prescribed initial and boundary conditions, as well as a microphysical scheme.

Characteristic Chemical Correlations in Nearby Star-forming Molecular Clouds

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Evans, Neal J. II;Offner, Stella;Heyer, Mark H.;Choi, Yunhee;Lee, Yong-Hee;Baek, Giseon;Choi, Minho;Kang, Hyunwoo;Tatematsu, Ken'ichi;Lee, Seokho;Yang, Yao-Lun;Gaches, Brandt;Chen, How-Huan
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.41.1-41.1
    • /
    • 2020
  • Different molecular lines trace different physical environments (with various densities and temperatures) within molecular clouds (MCs). Therefore, multimolecular line observations are crucial to study the physical and chemical structures of MCs. We observed the Orion A and Ophiuchus clouds in six different molecular lines as a Taeduk Radio Astronomy Observatory Key Science Program (TRAO-KSP), "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale" (TIMES; PI: Jeong-Eun Lee). Here, we investigate the characteristic relations between the observed lines by performing the Principal Component Analysis (PCA). We also investigate the correlation between the line intensity distributions and the physical parameters, such as the gas column density and dust temperature. Finally, we will discuss how the correlations among different chemical tracers vary with the star formation environments.

  • PDF

Turbulent Properties in Two Molecular Clouds: Orion A and ρ Ophiuchus

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Lee, Seokho;Choi, Minho;Kang, Hyunwoo;Tatematsu, Ken'ichi;Offner, Stella S.R.;Gaches, Brandt A.L.;Heyer, Mark H.;Evans, Neal J. II;Yang, Yao-Lun
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.33.1-33.1
    • /
    • 2017
  • Molecular clouds are the sites of stellar birth, and conditions within the clouds control the mode and tempo of star formation. In particular, turbulence largely determines the density and velocity fields, and can affect the gas kinetic temperature as it decays via shocks. However, despite its central role in star formation and many years of study, the properties of turbulence remain poorly understood. As a part of the TRAO key science program, "Mapping turbulent properties of star-forming molecular clouds down to the sonic scale (PI: Jeong-Eun Lee)", we mapped the northern region of the Orion A molecular cloud and the L1688 region of the ${\rho}$ Ophiuchus molecular cloud in 2 sets of lines (13CO 1-0/C18O 1-0 and HCN 1-0/and HCO+ 1-0) using the Taeduk Radio Astronomy Observatory (TRAO) 14-m telescope. We analyze these maps using a python package 'Turbustat', a toolkit which contains 16 different turbulent statistics. We will present the preliminary results of our TRAO observations and various turbulence statistical analyses.

  • PDF

TRAO Survey of Nearby Filamentary Molecular Clouds, the Universal Nursery of Stars (TRAO FUNS). III. Dynamics of filaments in different star forming environments

  • Chung, Eun Jung;Kim, Shinyoung;Yoo, Hyunju;Lee, Chang Won
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.69.2-69.2
    • /
    • 2019
  • Recent high resolution IR observations reveal that molecular clouds are filamentary and such a structure is ubiquitous over various star-forming environments, and it is clear that filaments play a crucial role in the formation of cores and stars. However, the formation process of dense cores in the filaments are still unknown. To investigate this issue in detail, we have carried out TRAO FUNS (TRAO survey of nearby Filamentary molecular clouds, the Universal Nursery of Stars) toward various star forming filamentary molecular clouds. In this presentation, we will report the first look results of filaments and dense cores in MCLD 123.5+24.9 and IC 5146, which are known as a quiescent, non-star-forming region and an active, high-mass star forming region, respectively. By comparing the kinematic properties of filaments and dense cores in different star forming environments, we verified the formation scenario of filaments and dense core, i.e., gravoturbulent fragmentation via supersonic motions.

  • PDF

TRAO-TIMES: Investigating Turbulence and Chemistry in Two Star-forming Molecular clouds

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Evans, Neal J. II;Offner, Stella S.R.;Baek, Giseon;Lee, Yong-Hee;Choi, Minho;Kang, Hyunwoo;Cho, Jungyeon;Lee, Seokho;Tatematsu, Ken'ichi;Heyer, Mark H.;Gaches, Brandt A.L.;Yang, Yao-Lun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • Turbulence produces the density and velocity fluctuations in molecular clouds, and dense regions within the density fluctuation are the birthplace of stars. Also, turbulence can produce non-thermal pressure against gravity. Thus, turbulence plays a crucial roles in controlling star formation. However, despite many years of study, the detailed relation between turbulence and star formation remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES; PI: Jeong-Eun Lee)", we mapped two star-forming molecular clouds, the Orion A and the ρ Ophiuchus molecular clouds, in six molecular lines (13CO 1-0/C18O 1-0, HCN 1-0/HCO+ 1-0, and CS 2-1/N2H+ 1-0) using the TRAO 14-m telescope. We applied the Principal Component Analysis (PCA) to the observed data in two different ways. The first method is analyzing the variation of line intensities in velocity space to evaluate the velocity power spectrum of underlying turbulence. We investigated the relation between the star formation activities and properties of turbulence. The other method is analyzing the variation of the integrated intensities between the molecular lines to find the characteristic correlation between them. We found that the HCN, HCO+, and CS lines well correlate with each other in the integral shaped filament in the Orion A cloud, while the HCO+ line is anti-correlate with the HCN and CS lines in L1688 of the Ophiuchus cloud.

  • PDF

FRACTAL DIMENSIONS OF INTERSTELLAR MEDIUM: II. THE MOLECULAR CLOUDS ASSOCIATED WITH THE HII REGION SH 156

  • Lee, Young-Ung;Kang, Mi-Ju;Kim, Bong-Kyu;Jung, Jae-Hoon;Kim, Hyun-Goo;Yim, In-Sung;Kang, Hyung-Woo;Choi, Ji-Hoon
    • 천문학회지
    • /
    • 제41권6호
    • /
    • pp.157-161
    • /
    • 2008
  • We have estimated the fractal dimension of the molecular clouds associated with the Hii region Sh 156 in the Outer Galaxy. We selected the $^{12}CO$ cube data from the FCRAO CO Survey of the Outer Galaxy. Using a developed code within IRAF, we identified slice-clouds (2-dimensional clouds in velocity-channel maps) with two threshold temperatures to estimate the fractal dimension. With the threshold temperatures of 1.8 K, and 3 K, we identified 317 slice-clouds and 217 slice-clouds, respectively. There seems to be a turn-over location in fractional dimension slope around NP (area; number of pixel) = 40. The fractal dimensions was estimated to be D = $1.5\;{\sim}\;1.53$ for $NP\;{\geq}\;40$, where $P\;{\propto}\;A^{D/2}$ (P is perimeter and A is area), which is slightly larger than other results. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Fractal dimension is apparently invariant when varying the threshold temperatures applied to slice-clouds identification.

FRACTAL DIMENSIONS OF INTERSTELLAR MEDIUM: I. THE MOLECULAR CLOUDS IN THE ANTIGALACTIC CENTER

  • LEE YOUNGUNG
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.137-141
    • /
    • 2004
  • We have estimated the fractal dimension of the molecular clouds in the Antigalactic Center based on the $^{12}CO$ (J = 1- 0) and $^{13}CO$ (J = 1- 0) database obtained using the 14m telescope at Taeduk Radio Astronomy Observatory. Using a developed code within IRAF, we were able to identify slice-clouds, and determined the dispersions of two spatial coordinates as well as perimeters and areas. The fractal dimension of the target region was estimated to be D = 1.34 for low resolution $^{12}CO$ (J = 1 - 0) database, and D = 1.4 for higher resolution $^{12}CO$ (J = 1 - 0) and $^{13}CO$ (J = 1 - 0) database, where $P {\propto} A^{D/2}$. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Our database with higher resolution of 1 arcminute, which is corresponding to 0.2 pc at a distance of 1.1 kpc, gives us the same estimate of fractal dimension to that of local dark clouds. Fractal dimension is apparently invariant when varying the threshold temperatures applied to cloud identification. According to the dispersion pattern of longitudes and latitudes of identified slice-clouds, there is no preference of elongation direction.

비행 시뮬레이션을 위한 구름 모델링 및 렌더링 (Modeling and Rendering of Clouds for Real-time Flight Simulation)

  • 도주영;백낙훈;이창우;유관우
    • 정보처리학회논문지A
    • /
    • 제16A권5호
    • /
    • pp.307-318
    • /
    • 2009
  • 컴퓨터 그래픽스에서 구름과 같은 대기 현상을 모델링하고 렌더링하는 것은 그 복잡성과 규모, 편재성 등으로 인해 상당히 까다로운 연구과제들 중의 하나이다. 본 논문은 컴퓨터 게임이나 항공 시뮬레이션 분야에서 요구되는, 실시간에 처리될 수 있는 구름 모델링과 렌더링 방법을 제안한다. 제안하는 방법은 사용자가 직관적이고 대화형 편집 과정을 거쳐 권운, 층운, 적운 등의 다양한 형태를 생성할 수 있다. 또한, 메타볼과 계층적 구형 파티클을 사용하여, 세부 묘사를 자동으로 추가할 수 있다. 생성된 파티클들은 다중 순방향 산란과 이방성 산란을 고려하여 빌보드 방식으로 출력함으로써 실시간 처리가 가능하다.

IGRINS Observations of Star Forming Clouds in NGC 6822 Hubble V

  • Pak, Soojong;Lee, Hye-In;Le, Huynh Anh N.;Lee, Sungho;Chung, Aeree;Kaplan, Kyle;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.92.2-92.2
    • /
    • 2014
  • NGC 6822 is a dwarf irregular galaxy in the Local Group. Unlike clouds in the Large Magellanic Cloud and the Small Magellanic Cloud, molecular clouds in NGC 6822 are not influenced by the Galactic tidal force. Therefore the star forming processes are only dictated by local conditions. Hubble V is the brightest of the several bright H II region complexes in NGC 6822. The core of Hubble V, surrounded by a molecular cloud complex, contains compact clusters of bright blue stars. During the commissioning runs of the new high-resolution near-infrared spectrometer, IGRINS (Immersion GRating near-INfrared Spectrometer), we observed Hubble V and detected many emission lines from the H II regions and from the photodissociation region at the interface between the ionized gas and the molecular cloud. In this presentation, we report preliminary results of the IGRINS observations. We discuss the implications of the observed lines ratios and kinematics for our understanding of the evolution of star forming molecular clouds.

  • PDF