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A three-dimensional linear model and the Advanced Regional Prediction System (ARPS) were used to simu-
late parabola-shaped disturbances and clouds in the lee of a bell-shaped mountain. The ARPS model was com-
pared in the x-y plane against the linear model's analytic solution. Under similar conditions with the linear

theory, the ARPS produced well-developed parabola-shaped mountain disturbances and confirmed the features
are accounted for in the linear regime. A parabola-shaped cloud in the lee of an isolated bell-shaped mountain
was successfully simulated in the ARPS after 6 hours of integration time with the prescribed initial and boun-

dary conditions, as well as a microphysical scheme.
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1. Introduction

Mountain internal gravity wave (IGW) is generated
when a stably-stratified fluid passes over a mountain-
ous terrain. This phenomenon is one of the meso-f3
scale atmospheric events”. This is a density-stratified
flow past mountains and can be accounted for by
non-dimensional mountain half-width a=Na/U or
mountain height h= NH/U (N: Brunt- Viisila fre-
quency; a: mountain half-width; A: maximum height
of topography; I%: inflow velocity). h is the same as
the inverse of Froude number defined by Fr=U/NH.
Previous researches show that this flow is linear
when the h< 1 (Fr>1), otherwise it is non-linear
when the h> 1 (Fr<l). The flow is hydro-
static(nonhydrostatic) if a>> 1(a< 1). Karman vorti-
ces and cloud streets are typical phenomena gen-
erated by non-linear disturbances in the lee of ob-
stacles” while parabola-shaped disturbances are the
results of linear wave disturbances™. All waves in-
cluding mountain waves are oftentimes invisible but
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Figure 1 shows the image of parabo-
la-shaped cloud created in the lee of an isolated
mountain.

can visualized sometimes in form

clouds

Analytical theories explaining mountain waves in-
clude linear, finite amplitude and hydraulic theories.
The finite amplitude theory is proper for describing
high-energy events like large amplitude mountain
waves and downslope windstorms'>"'®. On the other
hand, the hydraulic theory is commonly used to de-
scribe shallow water waves using shallow water
equations. Hydraulic theory was first used by Long'’
to represent downslope winds. The linear theory is
appropriate in showing the basic gravity wave re-
sponses to steady flow passing over a small obstacle
in a continuously stratified fluid. Studies of mountain
waves as a three dimensional phenomenon are rela-
tively rare in the literature®™**. Wurtele’®, for the
first time, computed vertical velocities in three di-
mensions for the lee of an isolated mountain.

For mathematical simplicity, linear theory assumes
a uniform incoming flow and constant static stability
profiles. Authors who have used such conditions
include Lyram and Queney*"”™ for two dimensional



Seung-Jae Lee, Hwa-Woon Lee and Sung-Dae Kang

Fig. 1. A parabola-shaped cloud in the lee of an isolated
bell-shaped mountain. This is a good evidence of
linear mountain wave activities (Fr>»1) in our

atmosphere. (Taken from Wurtele®®)

barriers, and Wurtele®, Crapper”, Smith®™ and
Phillips'” in the three dimensional case. Phillips'”
did a similar work for an elliptical mountain. Hu et
al.” evaluated analytic solutions to the nonhydrostatic
and hydrostatic forms of Long's model under two
types of lower boundary conditions and the same up-
per boundary condition. He concluded that the sig-
nificance of the effect of the hydrostatic balance as-
sumption on the solutions of Long's model depends
not only on the inclusion of this assumption in the
model, but also on the actual vertical boundary con-
ditions used in the solution evaluation.

The purpose of this study is to simulate dis-
turbances induced by mountain wave using an linear
model and the ARPS, respectively. The linear moun-
tain-wave solution will be used for the comparison
with the ARPS, a complicated non-linear model.
Until now, such validation tests used two-dimensional
approach in the x-z plane for mountain wave vali-
dation experimentsm. Thus, evaluation of the ARPS
results for the simulation of mountain wave dis-
turbance will be presented in the x-z horizontal
plane. In Section 2, a three-dimensional linear model
is reviewed to understand mountain wave dis-
turbances over an ideal terrain. In Section 3, the
ARPS is compared against the linear model solution.
The experimental design for a numerical simulation
of a parabola-shaped cloud in the lee of an isolated
bell-shaped mountain is also described. And finally,
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Section 4 summarizes this paper.

2. Analytical Simulation

2.1. Governing equations

For the theoretical description of linear mountain
waves, a steady flow of a vertically-unbounded, in-
compressible and stably-stratified Boussinesq fluid,
over small-amplitude topography given by z=J(x, y),
is considered. The perturbations to the background
wind, pressure and density fields are expressed by
the following linearized governing equations:

’
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where x 3 and ; are the downstream, cross

stream and vertical coordinates; 4, o, w, p, f»
and p are the corresponding perturbation velocity
components and the perturbation density, pressure
and vertical displacement; and Py U, anddp/dz are
the background mean density, wind speed, and verti-
cal density gradient, respectively.

Using the kinematic condition for steady flow

an _
dt
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and with ¢/taken as a constant, the system of gov-
erning eqs. (1) to (5) can be reduced to a single
equation for n(x y,z) the vertical displacement of
fluid parcel, or a density surface, above its undis-
turbed level
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S2 and N2 are the Scorer parameter describing
the wvertical structure of the disturbance and the
square of the Brunt-Viisdla frequency, respectively.
In this paper, Sis constant for all cases because the
basic wind is uniform. p7is likewise set constant in
the horizontal and vertical.

Now, the general solution of eq. (7) can be ex-
pressed as a double Fourier integral

n(e,y,z)= / / ok, 1) (D2t i+ ) gy 8)
where
k1) = %// hz,y)e™ e T gy %)
47 —
) B+, .
m’= (/@T)(Sz_kz) for nonhydrostatic case, and
(10)
z=3km
z=1km
Ground

(a)

N (K412

N 3 for hydrostatic case.

(11)

For S2¢%2 the positive imaginary root of eq.
(10) must be chosen to reflect exponential decay of
the disturbance amplitude with height, and for
S§%> K* the sign of 7, must be chosen to be the
same as the sign of k& in order to satisfy the radia-
tion condition aloft. To evaluate eq. (8), a two-di-
mensional finite FFT algorithm is used®”. Once the
vertical displacement n is determined with the help
of this technique, the other dependent variables can
be calculated simultaneously from the basic equations

(6), (3), (1) and (2).

2.2, Test results

Fig. 2 shows examples of the three-dimensional
(3D) vertical displacements of stably-stratified flows
at two levels (1 km and 3 km) over an isolated
bell-shaped mountain given by

z=3km

z=1km

Ground |,

(b)

Fig. 2. The vertical displacement p(x, y 2) by linear mountain wave disturbances at two levels over (a) large (a=5 km)
and (b) small (a=1 km) bell-shaped mountains. The nonhydrostatic forms of the vertical wave number 4 is
used. The inflow velocity and buoyancy frequency was given U=10 m s” and N=0.014 s, respectively. (Taken

from Lee and Lee'”)
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h,,
(1+7‘2/a2)n ’

hz,y) = n=1

where 7 =24y z and y are the distance
from the center of the mountain, ,is the horizontal
mountain scale, and A, is the mountain height'". A
sampling interval dz(=dy) is 3 km and the number
of grid points is 128 by 64 in the x and y direction.
In this case, the patterns of the vertical displace-
ments were computed with the non-hydrostatic form
of the vertical wave number m, typical atmospheric
values of =10 m s and A=0.014 s were chosen.

Figures 2a and b show the patterns of the vertical
displacements the two levels associated with
mountain wave disturbances in cases of a large
mountain (g=5 km) and small one (a=1 km), re-
spectively. We can see that at a given height the
wave disturbance is in parabola-shaped, and this pa-
rabola becomes wider with height. Especially, fea-
tures of well-developed horse-shoe vortices can be
seen at 1 km level. These disturbances are caused by
mountain drag associated with the higher pressure on
the upwind slopes compared with the downwind as
distinguished from the surface friction. In case of a
very small hill, there are no wave motions in the
horizontal and vertical, and the flow have maximum
amplitude just above the mountain top (not shown
here).

at

3. Numerical Simulation

3.1. The ARPS

The numerical model used is the Advanced Regional
Prediction System (ARPS) version 4.3.2b, which was
developed at the Center for Analysis and Prediction
of Storms (CAPS) at the University of Oklahoma®”.
The ARPS is a non-hydrostatic atmospheric pre-
diction model, which is appropriate for use on scales
a to hundreds of
kilometers. It is based on compressible Navier-Stokes
equations describing the atmospheric flow, and uses

ranging from few meters

a generalized terrain-following coordinate system. A
variety of physical processes are taken into account
in the model system. This general purpose and com-
pressible model is designed for storm and other
meso-scale atmospheric simulations in real-time pre-
diction on both conventional scalar/vector as well as
parallel computers”. The dynamics framework con-
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sists of prognostic equations for momentum, heat
(potential temperature), mass (pressure), water sub-
stances, subgrid-scale turbulent kinetic energy (TKE)
and the equation of state. All of them are expressed
in a fully conservative form in a curvilinear coor-
dinate system which is orthogonal in the horizonal.
The continuous equations are solved numerically on
an Arakawa C-grid using a split-explicit time in-
tegration scheme'” in a rectangular computational
space. Scalars are defined at the center of the grid
boxes and the normal velocity components defined
on the corresponding box faces.

In the ARPS, wind components and state variables
are defined as the sums of base-state variables and
deviations from the base state. The base state is as-
sumed to be horizontally homogeneous, time in-
variant and hydrostatically balanced. For this reason,
the base-state mass and wind fields are, in general,
not geostrophic  balance, the
base-state winds are zero. The details of the model
can be found in the ARPS User's Guide™.

in except when

3.2. Comparison with analytic solution

In this subsection, the ARPS was compared with
analytic solutions for model validation. It has been
tested using two-dimensional analytic solutions of
22 but comparison with 3D moun-
tain wave solutions is scarcely conducted up to now.
Kang” investigated the mechanism of two nonlinear
disturbances in the lee of an isolated mountain,
Karman vortex and cloud streets, using a Local
Circulation Model and the Regional Atmospheric
Modeling System, respectively”™'?. He checked the ac-
curacy of LCM by comparing the numerical results
of low mountain case with solution of
Smith™.

To facilitate the comparison of numerical results
with analytic solutions, several approximations are
made to the original equations used in the ARPS.

- The Boussinesq approximation is imposed by set-

mountain waves

linear

ting the base state density to constant (p,) every-
where, except the buoyancy term in the vertical
momentum equation. The base state pressure is ex-
pressed as a function only of height and is as-
sumed in hydrostatic balance.

- Only the I1st-order terms in the linearized buoy-
ancy terms are used. Incompressibility assumption
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is made in the buoyancy term such that the ther-

mal buoyancy ¢6/8 is identical to —gp’/po, as in
the linear model of Section 2. Thus, the atmos-
phere is horizontally and vertically homogeneous.

- The full pressure equation is replaced by the ane-
lastic continuity equation. Because there is no op-
tion for hydrostatic or incompressible system in
the ARPS, the code of the ARPS was modified to
force the incompressibility constraint by removing
the pressure advection term. This allows only the
partial time derivative with respect to perturbation
pressure which is small. Eliminating the pressure
advection does not in itself imply incompressibility
for time-dependent calculations, but removing the
pressure advection does imply incompressibility at
steady state. Thus, for steady flow, the approx-
imation leads to model calculations that are strictly
incompressible. Though not entirely physical, this
approximation is to some extent valid since the
largest term in the pressure equation is the di-
vergence term, which is higher by a few orders of
magnitude.

- The constant static stability atmosphere with a uni-
form ambient wind is assumed to represent the
simple situation found in the linear theories. The
mountain is Jow (so the wave amplitude is essen-
tially linear) and wide (so that the flow is nearly
hydrostatic).

The computational domain is a rectangle, shown
in Fig. 3 covering 131 by 67 grid points (128 by 64
for the linear model) in the x and y directions, re-
spectively (Ax=Ay=3 km). The model atmosphere
is divided into 67 levels with uniform interval of
200 m. Klemp-Lilly-Durran radiation condition is
adopted for lateral boundaries,
while periodic boundary condition is imposed on the
side boundaries in y-direction. The bottom boundary
is assumed as a free-slip rigid wall. The top boun-

windward/leeward

dary is treated carefully since IGWs propagate up-
ward and reflect in this region. In this section,
Orlanski formulation with additional vertical averag-
ing, calculated after Durran and Klemp® is employed
for the top boundary. This technique is known to
improve the results in the tests with linear mountain

waves and gravity wave propagation cases”.
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Fig. 3. Boundary and initial conditions used to simulate
parabola-shaped disturbances in the lee of a circu-
lar mountain using the ARPS. In this case, Fr is
2,525 and the ground potential temperature is 280 K.

Fourth-order (second-order) finite differencing of
the advection terms is used the horizontal
(vertical). The Coriolis force and surface drag are
neglected since they play insignificant roles on the
mechanical motions of mountain wave disturbances.
The 1.5 TKE turbulent mixing and isotropic di-
vergence damping are selected for a vertical mixing
and acoustic wave divergence damping options,
respectively. A sponge layer is constructed using a
Rayleigh friction, which has a coefficient prescribed
v(z) = (,2)[1 —cos m(z—2,)/(2,—2)] in the sponge
layer, where Z; is the height of the bottom of the

in

sponge layer, 2, the height of the top of the domain,
and V; the maximum Rayleigh friction coefficient. In
this case, the following parameters have been adopt-
ed: =8 km, 2=12.3 km, 1,=0.0083 s~ L. The in-
verse of v, is 20 times the large time step (6.0 s),

as recommended by Xue et al.?”.

In this experiment, the Froude number is 2.525,
which satisfies the linear regime. The Klemp-Durran
upper boundary condition is exact for the case of
linear hydrostatic gravity waves. Thus, if we are try-
ing to match a linear solution in the hydrostatic re-
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gime, then we do not need to include a sponge
layer. However, in this case, a mountain height 300
m is somewhat large and the Froude number 2.525
is not so big for a linear mountain wave regime.
Therefore, we still put a sponge layer above the
mountain in this simulation,

Figure 4 shows the comparison of numerical re-
sults from the ARPS with analytic solutions from the
linear model. Overally, the numerical and analytic
solutions agree with each other, and they are
consistent. Basically, this indicates the phenomena
can be explained in the linear regime using linear
theory. Especially, the downward motions match very
closely, but the contours of upward motions are
somewhat overestimated by the numerical model. The
difference between the two models as depicted by
the contour shape is due to the hydrostatic assump-
tion and incompressibility constraint in the linear
mode! and the initialization procedure in the ARPS.

Also, nonlinearity (Fr=2.525) is a possible source
of the discrepancy between the FFT results and the
ARPS calculations. If a mountain height that is small
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Fig. 4. Horizontal cross sections of the vertical velocity
from the ARPS and lincar model at [ r216.
The vertical velocity is taken at 1.1 km and the
contours with the values of -7, -3, -1, +1, +2, +4
cm s are plotted. Dashed contours indicate down-
ward motions.
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enough to eliminate the nonlinear effects is used, the
two models will be more matched.

3.3. Parabola-shaped clouds in the lee of an isolated

bell-shaped mountain

Simulation of a parabola-shaped cloud observed in
the lee of an isolated bell-shaped mountain is carried
out. Most parameters are similar with the previous
subsection except for equation formulations. The sec-
ond order terms and total density are used in the lin-
earized buoyancy and pressure gradient force terms,
respectively. Original formulation as described in
ARPS 4.0 User's Guide for pressure equation is
used. The Boussinesq approximation is not adopted
in the simulation. Anisotropic divergence damping is
selected for acoustic divergence damping
options. Kessler microphysics parameterization scheme
is used for the cloud formation in the model.

The vertical profiles of ground-relative wind, po-
tential temperature and specific humidity are shown
in Fig. 5. The basic wind is westerly and its speed
increases linearly with height from 2 m s at the
ground up to 2=500 m. Above 500 m, there is no

wave
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Fig. 5. Wind (m s, potential temperature (K) and specif-
ic humidity (g kg) profiles used in the numerical
simulation of the parabola-shaped clouds in the lee
of a circular mountain.
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vertical wind shear. Water vapor decreases linearly at
the rate of 2 g kg km™ from a base value of 11.5
g kg up to 2=5 km, from the level, 0.36 g kg up
to z=8 km approaching to 0 g kg’l at 12 km.

Potential temperature increases with height at 10 K
km" from the base state of 280 K up to 12 km, so
that strong stability exists, and then 20 K km™ in
the stratosphere. These initial conditions are based on
Kang and Kimura”,

Figure 6 shows the evolution of cloud water
mixing ratio at the height of 1.1 km at integration
time 5.0, 5.5 and 6.0 hours. A parabola-shaped and
well-developed cloud in the
mountain is successfully simulated after 6 hours. The
feature is similar to those commonly observed in the
atmosphere. The cloud formed when the model is al-
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Fig. 6. Horizontal cross sections of cloud water mixing ra-
tio (contours) at 1.1 km at integration time 5.0, 5.5
and 6.0 hours.

most at the steady state condition. The cloud shape
is formed as a result of mountain wave activities,
which are almost linear disturbances as in the hydro-
static 3D model (see Figs. 1, 2 and 4).

4. Conclusions

In this study, we intended to simulate a parabo-
la-shaped cloud caused by mountain wave dis-
turbances past a bell-shaped mountain. First, a 3D
linear model was used to analytically simulate the
airflow over small-amplitude mountains. This linear
model treats only the mechanical disturbances with-
out heat source, and the solutions are obtained by
using a FFT method. The linear model provided fun-
damental insight into the underlying dynamics and
showed reasonably the occurrence and basic features
of the mountain wave disturbance. Because there
would be no wave disturbance like Fig. 1 without
mountain, the analytical simulation confirmed again
that the parabola-shaped cloud can be generated only
by mechanical effect of the circular mountain.

Second, the ARPS was adopted for the non-linear
numerical simulation of parabola-shaped clouds in-
duced by mountain wave disturbances. For the simu-
lation, the ARPS was simplified and compared
against a 3D linear mountain wave solution.
Validation tests of the ARPS for three-dimensional
linear mountain wave disturbance are carried out for
the first time. It is shown that the ARPS is .able to
reproduce the linear results closely when the system
of equations is simplified. The well-developed parab-
ola-shaped cloud in the lee of a circular mountain
was successfully simulated using the prescribed mod-
el initial and boundary conditions after 6 hours. The
resulting patterns are similar to those observed in the
atmosphere.
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