• Title/Summary/Keyword: Lee Seong-Ah

Search Result 374, Processing Time 0.028 seconds

Automated measurement and analysis of sidewall roughness using three-dimensional atomic force microscopy

  • Su‑Been Yoo;Seong‑Hun Yun;Ah‑Jin Jo;Sang‑Joon Cho;Haneol Cho;Jun‑Ho Lee;Byoung‑Woon Ahn
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.1.1-1.8
    • /
    • 2022
  • As semiconductor device architecture develops, from planar field-effect transistors (FET) to FinFET and gate-all-around (GAA), there is an increased need to measure 3D structure sidewalls precisely. Here, we present a 3-Dimensional Atomic Force Microscope (3D-AFM), a powerful 3D metrology tool to measure the sidewall roughness (SWR) of vertical and undercut structures. First, we measured three different dies repeatedly to calculate reproducibility in die level. Reproducible results were derived with a relative standard deviation under 2%. Second, we measured 13 different dies, including the center and edge of the wafer, to analyze SWR distribution in wafer level and reliable results were measured. All analysis was performed using a novel algorithm, including auto fattening, sidewall detection, and SWR calculation. In addition, SWR automatic analysis software was implemented to reduce analysis time and to provide standard analysis. The results suggest that our 3D-AFM, based on the tilted Z scanner, will enable an advanced methodology for automated 3D measurement and analysis.

Economic Feasibility Analysis of Electrical Vehicle Charging Station Connected with PV & ESS based on ESS Valuation (ESS 가치평가 기반 PV-ESS 연계 EV 충전스테이션 사업 타당성 분석)

  • Ji Hyun Lee;Seong Jegarl;Yong Chan Jung;Ah-Yun Yoon
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.124-133
    • /
    • 2023
  • In order to deploy the large-scale energy storage (ES) service in the various industry, it is very important to develop a business model with high technological and economic feasibility through detailed valuation of cost and expected benefits. In relation to this, this paper established an optimal scheduling plan for electric vehicle charging stations connected with photovoltaic (PV) and ES technologies in Korea using the distributed energy resource valuation tool and analyzed the feasibility of the project. In addition, the impact of incentives such as REC (Renewable Energy Certificate) to be given to electric vehicle charging stations in accordance with the relevant laws to be revised in the future was analyzed. As a results, the methodology presented in this paper are expected to be used in various ways to analyze the feasibility of various business models linked to renewable energy and ES technologies as well as the electric vehicle market.

Geometric Modeling and Data Simulation of an Airborne LIDAR System (항공라이다시스템의 기하모델링 및 데이터 시뮬레이션)

  • Kim, Seong-Joon;Min, Seong-Hong;Lee, Im-Pyeong;Choi, Kyung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.311-320
    • /
    • 2008
  • A LIDAR can rapidly generate 3D points by densely sampling the surfaces of targets using laser pulses, which has been efficiently utilized to reconstruct 3D models of the targets automatically. Due to this advantage, LIDARs are increasingly applied to the fields of Defense and Security, for examples, being employed to intelligently guided missiles and manned/unmanned reconnaissance planes. For the prior verification of the LIDAR applicability, this study aims at generating simulated LIDAR data. Here, we derived the sensor equation by modelling the geometric relationships between the LIDAR sub-modules, such as GPS, IMU, LS and the systematic errors associated with them. Based on this equation, we developed a program to generate simulated data with the system parameters, the systematic errors, the flight trajectories and attitudes, and the reference terrain model given. This program had been applied to generating simulated LIDAR data for urban areas. By analyzing these simulated data, we verified the accuracy and usefulness of the simulation. The simulator developed in this study will provide economically various test data required for the development of application algorithms and contribute to the optimal establishment of the flight and system parameters.

A Case of Intravesical Cidofovir Treatment of BK Virus-Associated Hemorrhagic Cystitis after Allogeneic Peripheral Blood Stem Cell Transplantation (동종말초조혈모세포이식 후 발생한 BK 바이러스 출혈성 방광염의 Cidofovir 방광 내 주입 치험 1례)

  • Kang, Seong-Hun;Lee, Hwa-Jeong;Jang, Ye-Su;Ji, Jun-Ho;Lee, Sun-Ah;Lee, Won-Sik;Lee, Jung-Lim;Lee, Kyung-Hee
    • Journal of Yeungnam Medical Science
    • /
    • v.26 no.2
    • /
    • pp.143-147
    • /
    • 2009
  • Hemorrhagic cystitis (HC) is a common complication after allogeneic transplantation. Early posttransplant HC occurs in association with cyclophosphamide, while later on HC results from viral infections such as polyomavirus BK (BKV) and adenovirus. We report here the case of a 57-year-old woman who received an instillation of cidofovir into the bladder for the treatment of hemorrhagic cystitis after allogeneic peripheral stem cell transplantation for her acute myeloid leukemia. Cyclophosphamide and busulfan were used as conditioning treatments. Cyclosporin was administered daily. On the 71st day after transplantation, the patient developed acute severe hemorrhagic cystitis, and BK virus was demonstrated in the urine samples using polymerase chain reaction. Her urinary symptoms did not improve in spite of palliative treatment, but a response was evident after intravesical cidofovir treatment.

  • PDF

Knockdown of vps54 aggravates tamoxifen-induced cytotoxicity in fission yeast

  • Lee, Sol;Nam, Miyoung;Lee, Ah-Reum;Baek, Seung-Tae;Kim, Min Jung;Kim, Ju Seong;Kong, Andrew Hyunsoo;Lee, Minho;Lee, Sook-Jeong;Kim, Seon-Young;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.39.1-39.8
    • /
    • 2021
  • Tamoxifen (TAM) is an anticancer drug used to treat estrogen receptor (ER)-positive breast cancer. However, its ER-independent cytotoxic and antifungal activities have prompted debates on its mechanism of action. To achieve a better understanding of the ER-independent antifungal action mechanisms of TAM, we systematically identified TAM-sensitive genes through microarray screening of the heterozygous gene deletion library in fission yeast (Schizosaccharomyces pombe). Secondary confirmation was followed by a spotting assay, finally yielding 13 TAM-sensitive genes under the drug-induced haploinsufficient condition. For these 13 TAM-sensitive genes, we conducted a comparative analysis of their Gene Ontology (GO) 'biological process' terms identified from other genome-wide screenings of the budding yeast deletion library and the MCF7 breast cancer cell line. Several TAM-sensitive genes overlapped between the yeast strains and MCF7 in GO terms including 'cell cycle' (cdc2, rik1, pas1, and leo1), 'signaling' (sck2, oga1, and cki3), and 'vesicle-mediated transport' (SPCC126.08c, vps54, sec72, and tvp15), suggesting their roles in the ER-independent cytotoxic effects of TAM. We recently reported that the cki3 gene with the 'signaling' GO term was related to the ER-independent antifungal action mechanisms of TAM in yeast. In this study, we report that haploinsufficiency of the essential vps54 gene, which encodes the GARP complex subunit, significantly aggravated TAM sensitivity and led to an enlarged vesicle structure in comparison with the SP286 control strain. These results strongly suggest that the vesicle-mediated transport process might be another action mechanism of the ER-independent antifungal or cytotoxic effects of TAM.

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide (다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구)

  • Lee, Jong-Moon;Kim, Joo-Seong;Hong, Soon-Kie;Lee, Jeong-Jin;Ahn, Han-Cheol;Cho, Won-Il;Mho, Sun-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.172-180
    • /
    • 2012
  • The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.

Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries (유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조)

  • Kim, Dong-Hun;Doh, Chil-Hoon;Lee, Jeong-Hoon;Lee, Duck-Jun;Ha, Kyeong-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2008
  • Sn-thin film as high capacitive anode for thin film lithium-ion battery was prepared by organic-electrolyte electroplating using Sn(II) acetate. Electrolytic solution including $Li^+$ and $Sn^{2+}$ had 3 reduction peaks at cyclic voltammogram. Current peak at $2.0{\sim}2.5\;V$ region correspond to the electroplating of Sn on Ni substrate. This potential value is lower than 2.91 V vs. $Li^+/Li^{\circ}$, of the standard reduction potential of $Sn^{2+}$ under aqueous media. It is the result of high overpotential caused by high resistive organic electrolytic solution and low $Sn^{2+}$ concentration. Physical and electrochemical properties were evaluated using by XRD, FE-SEM, cyclic voltammogram and galvanostatic charge-discharge test. Crystallinity of electroplated Sn-anode on a Ni substrate could be increased through heat treatment at $150^{\circ}C$ for 2 h. Cyclic voltammogram shows reversible electrochemical reaction of reduction(alloying) and oxidation(de-alloying) at 0.25 V and 0.75 V, respectively. Thickness of Sn-thin film, which was calculated based on electrochemical capacity, was $7.35{\mu}m$. And reversible capacity of this cell was $400{\mu}Ah/cm^2$.

Modeling of the Cycle Life of a Lithium-ion Polymer Battery (리튬 이온 폴리머 전지의 사이클 수명 모델링)

  • Kim, Ui Seong;Lee, Jungbin;Yi, Jaeshin;Shin, Chee Burm;Choi, Je Hun;Lee, Seokbeom
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.344-348
    • /
    • 2009
  • One-dimensional modeling was carried-out to predict the capacity loss of a lithium-ion polymer battery during cycling. The model not only accounted for electrochemical kinetics and ionic mass transfer in a battery cell, but also considered the parasitic reaction inducing the capacity loss. In order to validate the modeling, modeling results were compared with the measurement data of the cycling behaviors of the lithium-ion polymer batteries having nominal capacity of 5Ah from LG Chem. The cycling was performed under the protocol of the constant current discharge and the constant current and constant voltage charge. The discharge rate of 1C was used. The range of state of charge was between 1 and 0.2. The voltage was kept constant at 4.2 V until the charge current tapered to 50 mA. The retention capacity of the battery was measured with 1C and 5C discharge rates before the beginning of cycling and after every 100 cycles of cycling. The modeling results were in good agreement with the measurement data.

Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels

  • Pyeong Hwa Kim;Hee Mang Yoon;Jeong Rye Kim;Jae-Yeon Hwang;Jin-Ho Choi;Jisun Hwang;Jaewon Lee;Jinkyeong Sung;Kyu-Hwan Jung;Byeonguk Bae;Ah Young Jung;Young Ah Cho;Woo Hyun Shim;Boram Bak;Jin Seong Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1151-1163
    • /
    • 2023
  • Objective: To develop a deep-learning-based bone age prediction model optimized for Korean children and adolescents and evaluate its feasibility by comparing it with a Greulich-Pyle-based deep-learning model. Materials and Methods: A convolutional neural network was trained to predict age according to the bone development shown on a hand radiograph (bone age) using 21036 hand radiographs of Korean children and adolescents without known bone development-affecting diseases/conditions obtained between 1998 and 2019 (median age [interquartile range {IQR}], 9 [7-12] years; male:female, 11794:9242) and their chronological ages as labels (Korean model). We constructed 2 separate external datasets consisting of Korean children and adolescents with healthy bone development (Institution 1: n = 343; median age [IQR], 10 [4-15] years; male: female, 183:160; Institution 2: n = 321; median age [IQR], 9 [5-14] years; male: female, 164:157) to test the model performance. The mean absolute error (MAE), root mean square error (RMSE), and proportions of bone age predictions within 6, 12, 18, and 24 months of the reference age (chronological age) were compared between the Korean model and a commercial model (VUNO Med-BoneAge version 1.1; VUNO) trained with Greulich-Pyle-based age as the label (GP-based model). Results: Compared with the GP-based model, the Korean model showed a lower RMSE (11.2 vs. 13.8 months; P = 0.004) and MAE (8.2 vs. 10.5 months; P = 0.002), a higher proportion of bone age predictions within 18 months of chronological age (88.3% vs. 82.2%; P = 0.031) for Institution 1, and a lower MAE (9.5 vs. 11.0 months; P = 0.022) and higher proportion of bone age predictions within 6 months (44.5% vs. 36.4%; P = 0.044) for Institution 2. Conclusion: The Korean model trained using the chronological ages of Korean children and adolescents without known bone development-affecting diseases/conditions as labels performed better in bone age assessment than the GP-based model in the Korean pediatric population. Further validation is required to confirm its accuracy.