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Introduction 

Tamoxifen (TAM) is an estrogen receptor (ER) antagonist used to treat ER-positive 
breast cancer [1]. Thus, it is classified as a selective ER modulator (SERM). In fact, TAM 
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Tamoxifen (TAM) is an anticancer drug used to treat estrogen receptor (ER)-positive breast 
cancer. However, its ER-independent cytotoxic and antifungal activities have prompted de-
bates on its mechanism of action. To achieve a better understanding of the ER-indepen-
dent antifungal action mechanisms of TAM, we systematically identified TAM-sensitive 
genes through microarray screening of the heterozygous gene deletion library in fission 
yeast (Schizosaccharomyces pombe). Secondary confirmation was followed by a spotting 
assay, finally yielding 13 TAM-sensitive genes under the drug-induced haploinsufficient 
condition. For these 13 TAM-sensitive genes, we conducted a comparative analysis of their 
Gene Ontology (GO) ‘biological process’ terms identified from other genome-wide screen-
ings of the budding yeast deletion library and the MCF7 breast cancer cell line. Several 
TAM-sensitive genes overlapped between the yeast strains and MCF7 in GO terms includ-
ing ‘cell cycle’ (cdc2, rik1, pas1, and leo1), ‘signaling’ (sck2, oga1, and cki3), and ‘vesi-
cle-mediated transport’ (SPCC126.08c, vps54, sec72, and tvp15), suggesting their roles in 
the ER-independent cytotoxic effects of TAM. We recently reported that the cki3 gene with 
the ‘signaling’ GO term was related to the ER-independent antifungal action mechanisms 
of TAM in yeast. In this study, we report that haploinsufficiency of the essential vps54 
gene, which encodes the GARP complex subunit, significantly aggravated TAM sensitivity 
and led to an enlarged vesicle structure in comparison with the SP286 control strain. These 
results strongly suggest that the vesicle-mediated transport process might be another ac-
tion mechanism of the ER-independent antifungal or cytotoxic effects of TAM. 
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has diverse effects on eukaryotic cell physiology [2], including 
modulation of growth signaling [3], regulation of the cell cycle [4], 
induction of apoptosis [5], modulation of intracellular calcium re-
lease [6], antioxidant activity [7], antiangiogenic properties [8], 
and vesicle-mediated transport [9]. Consistent with its plethora of 
cellular effects, TAM is also involved in regulating a number of cel-
lular proteins beside ER, including calmodulin, protein kinase C 
(PKC), [10], phospholipase C [11], phosphoinositide kinase 
(PIK) [12], and V-ATPase [13]. 

Despite its categorization as a SERM, TAM also exerts antitu-
mor activity against ER-negative breast cancer [9] and nonmela-
noma skin cancer [14]. The ER-independent effects require ap-
proximately 10- to 100-fold higher concentrations of TAM than 
the ER-dependent effects [15]. The ER-independent effects might 
be partly attributed to the interference of TAM with diverse cellu-
lar enzymes, as has been previously reported [10,13]. Moreover, 
TAM has a narrow spectrum of antifungal activity against several 
yeast species [16,17] such as Saccharomyces cerevisiae (budding 
yeast) [18,19], Schizosaccharomyces pombe (fission yeast) [20], 
and Candida albicans [17]. The phenomena of ER-independent 
antitumor and antifungal activities have prompted debate on the 
action mechanism of TAM [2]. 

Budding and fission yeast species are useful unicellular model or-
ganisms [21]. In particular, the development of gene deletion li-
braries equipped with built-in barcodes in a gene-specific manner 
has opened the era of parallel analysis to screen for sensitive or re-
sistant genes at a genome-wide scale in response to drugs and 
chemicals of interest [22] under the principle of drug-induced hap-
loinsufficiency [23]. In this regard, a compendium of TAM-sensi-
tive genes has been constructed through drug-induced haploinsuf-
ficiency-based screening of the gene deletion library [18,24] and 
compared with those identified from the MCF7 breast tumor cell 
line through knockdown-based (RNAi) genome-wide screening 
[25]. Comparative research revealed that the effects of TAM were 
related to several signaling processes in common, including phos-
phoinositide-dependent kinase 1 (PDK1), PKC, PIK, calmodulin, 
many growth-related signaling genes and/or oncogenes such as the 
RAS signaling pathway [25,26]. 

In this study, we aimed to find a novel mechanism of the ER-in-
dependent antifungal effects of TAM, using the fission yeast het-
erozygous gene deletion library comprising all essential and viable 
genes [27]. Through a comparison of TAM-sensitive genes be-
tween yeast and the MCF7 breast cancer cell line, we found that 
the modulation of vesicle-mediated transport could be an action 
mechanism of the ER-independent antifungal activity of TAM in 
fission yeast. 

Methods 

Chemicals, medium, and the gene deletion library 
All chemicals and reagents were obtained from Sigma-Aldrich (St. 
Louis, MO, USA), unless stated otherwise. Yeast extract and agar 
were purchased from BD Difco (Sparks, MD, USA). For the sys-
tematic screening of TAM-sensitive target genes, we used the het-
erozygous gene deletion library of fission yeast constructed in a 
previous study [27]. Briefly, the library represents 98.4% 
(4,836/4,914) of all protein-coding genes, consisting of 1,260 es-
sential genes and 3,576 non-essential genes. All the deletion strains 
are available from Bioneer (Daejeon, Korea). 

Half-maximal inhibitory concentration assay 
The diploid control SP286 cell (h+/h+; ade6-M210/ade6-M216, 
leu1-32/leu1-32, ura4-D18/ura4-D18) was cultivated to the expo-
nential phase in YES medium (0.5% yeast extract, 3% glucose, and 
appropriate amino acid supplements) and diluted to an optical 
density at 600 nm (OD600) of 0.05 (~1 × 106 cells/mL) with the 
same YES medium. The cells were aliquoted into 96-well plates in 
triplicate and treated with 5-fold serial concentrations of TAM dis-
solved in 0.1% DMSO. After cultivating the cells for 17 h at 30°C, 
their growth profiles were then measured by OD600. The half-max-
imal inhibitory concentration (IC50) value was calculated by a sig-
moidal dose-response equation in GraphPad Prism (La Jolla, CA, 
USA).  

Genome-wide screening of TAM-sensitive genes in fission 
yeast  
The systematic screening of TAM-sensitive genes against 15 µM 
TAM was performed as previously described [22,27]. Microarray 
screening was performed using a custom-made GeneChip (48K 
KRIBB_SP2, Thermo Fisher Scientific, Waltham, MA, USA) and 
fluorescence-labeled probes were prepared by polymerase chain 
reaction of the pair of barcodes [27]. TAM-sensitive heterozygous 
target strains were primarily selected by the criterion of relative 
growth fitness of < 0.92 (p <  0.01) compared with the untreated 
diploid control strain SP286. 

Spotting assay 
The primarily screened TAM-sensitive strains were confirmed us-
ing spotting assays based on individual growth fitness. Cells in the 
log phase were diluted to an OD600 =  0.5 in YES medium and 
spotted in 5-fold serial dilutions onto YES agar plates with or with-
out 65 µM TAM. Compared with the growth fitness of the diploid 
control strain SP286, the screened TAM-sensitive strains were 
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classified by their degree of sensitivity to TAM as follows: severe 
(SSS) when growth fitness decreased by more than 2 serial dilu-
tions ( > 25-fold sensitivity); moderate (SS), between 1 to 2 serial 
dilutions (5–25-fold sensitivity); and mild (S), less than 1 serial 
dilution ( <  5-fold sensitivity). The relevant TAM-sensitive genes 
were then subjected to Gene Ontology (GO) analysis using the 
GO Resource (http://geneontology.org) and/or the Pombase 
(https://www.pombase.org). 

Microscopy of vesicles 
Cells were cultivated to the log phase in YES medium at 30°C in the 
presence of 20 µM TAM in 0.1% DMSO under vigorous aeration 
conditions. The cells were harvested, resuspended in YES medium, 
and treated with the FM4-64 staining dye (Thermo Fisher Scientif-
ic) to a final concentration of 10 μM at 30°C for 30 min. The cells 
were washed, resuspended in YES medium, and incubated at 27°C 
for 1 h. Their vesicles were visualized using a fluorescence micro-
scope (Leica DM5000B, Wetzlar, Germany) equipped with a digi-
tal CCD camera (DFC350FX). Differential interference contrast 
images were used as controls. 

Statistical analysis 
All experiments were analyzed using triplicate samples and repeat-
ed at least 3 times. Data are presented as the mean ±  SD, unless 
indicated otherwise. Statistical comparisons between groups were 

performed using the Student t-test. Results with p-values <  0.05 
were considered statistically significant. 

Results and Discussion 

Genome-wide screening of TAM-sensitive genes using the 
fission yeast heterozygous gene deletion library 
As a first step in genome-wide screening of TAM-sensitive target 
genes, we determined the IC50 of TAM in the SP286 fission yeast 
diploid strain. According to our previous genome-wide screenings, 
an optimal concentration of drugs to treat a gene deletion library is 
lower than the IC50. As shown in Fig. 1A, the IC50 of TAM was de-
termined to be 17 µM in SP286. Thus, the primary screening was 
performed with 15 µM TAM. The primary screening and the sec-
ondary confirmation processes were performed following the 
strategy shown in Fig. 1B. 

The primary screening yielded 55 candidates (data not shown). 
The secondary confirmation of the primary candidates by a spot-
ting assay resulted in 13 TAM-sensitive heterozygous strains, com-
pared with the SP286 diploid control strain (Fig. 2). In terms of 
TAM sensitivity, there were seven severe (SSS), three moderate 
(SS), and three mild (S) strains. They corresponded to 10 viable 
(non-essential) and three essential target genes in terms of dis-
pensability. Next, the GO terms of the 13 TAM target genes were 
examined in terms of biological processes, as shown in Table 1. 

Fig. 1. Strategy for genome-wide screening of tamoxifen (TAM)-sensitive heterozygous strains. (A) Measurement of the IC50 of TAM. The 
SP286 diploid control cells were treated with the indicated concentrations of TAM in 1% DMSO. After an additional cultivation for 17 h, the 
growth fitness was estimated by measuring optical density at 600 nm (OD600; n = 3). (B) Schematic drawing of a genome-wide screening 
of TAM-sensitive target strains. The fission yeast heterozygous deletion library was treated with 15 µM TAM. Primarily, 55 TAM-sensitive 
candidate strains were selected by the criterion of relative growth fitness (RF) of <0.92 (p < 0.05) compared with the untreated (1% DMSO) 
SP286 control strain, and subject to a subsequent spotting assay to confirm the candidate strains.
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Their GO terms were related to the following processes: ‘cell cycle’ 
(cdc2, rik1, pas1, and leo1), ‘signaling’ (sck2, oga1, and cki3), ‘vesi-
cle-mediated transport’ (SPCC126.08c, vps54, sec72, and tvp15), 
and ‘protein folding’ (cct6 and sks2). 

Comparison analysis of TAM-sensitive genes revealed that 
the GO terms related to ‘cell cycle,’ ‘signaling,’ and ‘vesicle-
mediated transport’ were shared between the yeasts and 
MCF7 
Upon identifying the 13 TAM-sensitive genes in the study, we 
compared their GO terms with those of TAM-sensitive genes 

Table 1. List of the 13 TAM-sensitive heterozygous strains

Gene name Gene description Biological process Sensitivity (dispensability)
cdc2 Cyclin-dependent protein kinase Cell cycle [4] SSS (E)
pas1 Cyclin Pas1 S (V)
rik1 CLRC ubiquitin ligase complex WD repeat protein SSS (V)
leo1 RNA polymerase II associated Paf1 complex subunit SSS (V)
cki3 Ser/thr protein kinase Signaling [28] SSS (V)
oga1 Stm1 homolog Oga1 SSS (V)
sck2 Ser/thr protein kinase S6K SS (V)
sec72 Arf GEF Sec72 Vesicle-mediated transport [13] SS (V)
SPCC126.08c Lectin family glycoprotein receptor S (V)
tvp15 COPI-coated vesicle associated protein SS (V)
vps54 GARP complex subunit SSS (E)
cct6 Chaperonin-containing T-complex zeta subunit Protein folding [29] SSS (E)
sks2 Hsp70 family heat shock protein S (V)

TAM, tamoxifen; S, mild; SS, moderate; SSS, severe; E, essential; V, viable.

Fig. 2. Confirmation of the tamoxifen (TAM)-sensitive candidate strains by spotting assays. TAM-sensitive strains primarily screened by 
microarray were confirmed by a spotting assay on plates containing 65 µM TAM, compared with the SP286 control strain (on top, middle, 
and bottom). The cells were 5-fold diluted serially. Their TAM sensitivity was classified as S (mild), SS (moderate), and SSS (severe).

DMSO (0.1%) TAM (65 µm) Sensitivity
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identified in budding yeast [18] and the MCF7 breast cancer cell 
line [25]. 

When the TAM-sensitive genes from fission yeast were com-
pared with those from MCF7 cells and budding yeast, several GO 
terms overlapped, including ‘cell cycle,’ ‘signaling,’ and ‘vesicle-me-
diated transport’ (Table 2). As TAM affected growth fitness in 
both types of yeast, the 3 common GO terms are likely to be relat-
ed to the ER-independent cytotoxicity of TAM. 

Recently, we reported that the knockdown of CSNK1G2, the 
mammalian orthologous gene of the yeast cki3 gene associated 

with the GO term ‘signaling,’ affected cytotoxicity in an ER-depen-
dent or -independent manner in a breast cancer cell line [20]. 
TAM-induced cytotoxicity is stronger in ER-positive cells than in 
ER-negative cells, because CSNK1G2 differently modulates the 
components of the phosphoinositide 3-kinase/AKT/mammalian 
target of rapamycin/S6K signaling pathway to ERK depending on 
ER. In yeasts, TAM could induce ER-independent cytotoxicity 
because TAM modulates the growth-related signaling pathway de-
spite the absence of ER. The TAM-sensitive genes related to the 
cell cycle clearly appear to be involved with growth fitness in re-

Table 2. Comparison of TAM-sensitive genes identified from the fission and budding yeasts and the MCF7 mammalian cell line

GO term: Biological process
Organism (method)

Fission yeast (microarray) Budding yeast (microarray) MCF7 cell line (RNAi)
Cell cycle rik1, cdc2, pas1, leo1 AMA1, SHE1, HOG1 CIT, PRKCL2, PIM2, PRKCA, ILK, PRKACB, PRKDC, 

PRKACB
Signaling oga1, sck2, cki3 MKK2, INM2 PRKCZ, PDK1, KRAS, PPP1R15B, AKT1, PIK3C2B, 

IRAK3, PIK3C2B, CD3E, RRAS2, GRK7
Vesicle-mediated transport vps54, SPCC126.08c, sec72, tvp15 NEO1 ABL1, CALM3, TMPRSS2, ACK1, PIP5K1A
Gene expression - POP4, PRP46, GCD2, RIT1 EDF1, IRAK3
Protein folding cct6, sks2 - -
Cell redox homeostasis - TRR1, PRX1 -
Cell differentiation - - TPM4
Response to estrogen - - ESR1
Miscellaneous - YNL179C, HTC1, NNR2, NOC2, PBA1 FLJ23074, C10orf72, C15orf55/NUT

TAM, tamoxifen; GO, Gene Ontology.

Fig. 3. Tamoxifen (TAM)-induced cytotoxicity via enlargement of vesicles. After the vps54 heterozygous strain was treated with or without 
20 µM TAM, its vesicle morphology was visualized by the FM4-64 staining dye and examined using fluorescent microscopy using its 
differential interference contrast image as a basis, compared with the SP286 control strain. Notably, the vps54 heterozygous strain showed 
enlarged vesicles (arrows in red) compared with the SP286 control strain. Moreover, the TAM treatment aggravated the cytotoxicity in 
the vps54 heterozygous strain, along with more enlarged vesicles (arrows in yellow) than in the SP286 control strain. DIC, differential 
interference contrast.

DMSO (0.1%)

Control
(SP286)

DIC DICFM4-64 FM4-64

TAM (20 μM)
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sponse to TAM. Notably, the association with the GO term ‘vesi-
cle-mediated transport’ was a novel result. This finding is consis-
tent with an accumulating body of evidence suggesting that the in-
tegrity of vesicles plays a key role in the cellular transport of chemi-
cals and drugs [30]. 

Knockdown of the vps54 gene aggravates TAM-induced 
cytotoxicity and disturbs vesicle-mediated structures 
The above findings prompted us to examine how the genes classi-
fied as being related to vesicle-mediated transport were related to 
the ER-independent antifungal or cytotoxic effects of TAM in fis-
sion yeast. Out of the 4 TAM-sensitive genes classified as related to 
the GO term ‘vesicle-mediated transport’ (SPCC126.08c, vps54, 
sec72, and tvp15), only the vps54 gene, which encodes a GARP 
complex subunit protein, was essential in terms of dispensability. 
Thus, vps54 was selected for further experiments, because essen-
tial genes are feasible for a functional study. 

As the vps gene family has been reported to affect the integrity 
of vesicles in terms of their amount and shape [31], we investigat-
ed whether its knockdown would affect growth fitness and cause a 
change in the number or shape of vesicles in response to TAM. 
Even without TAM treatment, the vps54 heterozygous mutant 
showed a high penetrance of enlarged vesicles (red arrows in Fig. 
3) without any detectable change in cell shape (Fig. 3) and growth 
fitness (Fig. 2), compared with the SP286 control strain. The re-
sults suggest that 2 copies of the vps54 gene are required to main-
tain the stability of vesicle size. When treated with TAM, the vps54 
heterozygous mutants showed more enlarged vesicles (yellow ar-
rows in Fig. 3) along with aggravated cytotoxicity (Fig. 2), com-
pared with the SP286 control. It is likely that haploinsufficiency of 
vps54 caused abnormal vesicle shape, leading to TAM-induced cy-
totoxicity. Consistent with these results, TAM has been reported 
to affect vesicle-mediated transport in mammalian cells [9], in-
cluding exocytosis and vesicular release [32]. 

On the contrary, there is an accumulating body of evidence re-
porting that blockade of the proton V-ATPase might affect the 
transport of drugs and metabolites due to malfunctioning vacuolar 
pH in mammalian cell lines [13,33]. However, this was not the 
case in fission yeast, as the heterozygous deletion mutants of vma 
genes encoding V-ATPase were not sensitive to TAM treatment 
(data not shown). 

In this study, for the first time in fission yeast, we have found that 
one of the action mechanisms of the ER-independent antifungal 
activity of TAM is related to vesicle-mediated transport, as in 
mammalian cells. Further in-depth research is needed to clarify 
the details of how TAM aggravates abnormal vesicle structure in 

the vps54 heterozygous strain and how abnormal vesicles are relat-
ed to TAM-induced cytotoxicity. 
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