• Title/Summary/Keyword: Lee Byeol

Search Result 263, Processing Time 0.019 seconds

A Study on the Landscape Interpretation of Songge Byeoleop(Korean Villa) Garden at Jogyedong, Mt. Bukhansan near Seoul for the Restoration (북한산 조계동 송계별업(松溪別業) 정원 복원을 위한 경관해석)

  • Rho, Jae-Hyun;Song, Suk-Ho;Jo, Jang-Bin;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.1-17
    • /
    • 2018
  • This study was conducted to interpret the landscape of Songge Byeoleop(Korean villa) garden at Jogyedong, Bukhansan near Seoul which was built in the mid 17C. to restore through the literature reviews and field surveys. The results were as follows; Songge Byeoleop garden was a royal villa, constructed at King Injo24(1646) of Joseon dynasty by prince Inpyeong(麟坪大君), Lee, Yo(李?, 1622~1658), the third son of King Injo who was a brother of King Hyojong. It was a royal villa, Seokyang-lu under Mt. Taracsan of Gyendeokbang, about 7km away in the straight line from main building. It was considered that the building system was a very gorgeous with timber coloring because of owner's special situation who was called the great prince. The place of Songge Byeoleop identity and key landscape of the place were consisted with Gucheon waterfall and the sound of the water with multi-layered waterfall which might be comparable to the waterfall of Yeosan in China. After the destruction of the building, the place was used for the royal tomb quarry, but there was a mark stone for forbidden quarry. The Inner part of Songge Beoleop, centered with Jogedongcheon, Chogye-dong, composted beautifully with the natural sceneries of Gucheon waterfall, Handam and Changbeok, and artificial structures, such as Bihong-bridge, Boheogak, Yeonghyudang and Gyedang. In addition, the existing Chinese characters, 'Songge Beoleop' and 'Gucheoneunpog' carved in the rocks are literary languages and place markings symbolizing with the contrast of the different forests and territories. They gave the names of scenery to the rock and gave meaning to them. Particularly, Gucheon waterfall which served as a visual terminal point, is a cascade type with multi-staged waterfall. and the lower part shows the topographical characteristics of the Horse Bowl-shaped jointed with port-holes. On the other hand, the outer part is divided into the spaces for the main entrance gate, a hanging bridge character, a bridge connecting the inside and the outside, and Yeonghyudang part for the purpose of living. Also in the Boheogak area, dual view frame structures are made to allow the view of the four sides including the width and the perimeter of the villa. In addition, at the view point in Bihong-bridge, the Gucheon water fall divides between the sacred and profane, and crosses the Bihong-bridge and climbs to the subterranean level.

CLK3 is a Novel Negative Regulator of NF-κB Signaling (NF-κB 신호경로에서 CLK3의 새로운 음성 조절자로서의 기능)

  • Byeol-Eun, Jeon;Chan-Seong, Kwon;Ji-Eun, Lee;Ye-Lin, Woo;Sang-Woo, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.833-840
    • /
    • 2022
  • Chronic inflammation has been shown to be closely associated with tumor development and progression. Nuclear factor kappa B (NF-κB) is composed of a family of five transcription factors. NF-κB signaling plays a crucial role in the inflammatory response and is often found to be dysregulated in various types of cancer, making it an attractive target in cancer therapeutics. In this study, CDC-like kinase 3 (CLK3) was identified as a novel kinase that regulates the NF-κB signaling pathway. Our data demonstrate that CLK3 inhibits the canonical and non-canonical NF-κB pathways. Luciferase assays following the transient or stable expression of CLK3 indicated that this kinase inhibited NF-κB activation mediated by Tumor necrosis factor-alpha (TNFα) and Phorbol 12-myristate 13-acetate (PMA), which are known to activate NF-κB signaling via the canonical pathway. Consistent with data on the ectopic expression of CLK3, CLK3 knockdown using shRNA constructs increased NF-κB activity 1.5-fold upon stimulation with TNFα in HEK293 cells compared with the control cells. Additionally, overexpression of CLK3 suppressed the activation of this signaling pathway induced by NF-κB-inducing kinase (NIK) or CD40, which are well-established activators of the non-canonical pathway. To further examine the negative impact of CLK3 on NF-κB signaling, we performed Western blotting following the TNFα treatment to directly identify the molecular components of the NF-κB pathway that are affected by this kinase. Our results revealed that CLK3 mitigated the phosphorylation/activation of transforming growth factor-α-activated kinase 1 (TAK1), inhibitor of NF-κB kinase alpha/beta (IKKα/α), NF-κB p65 (RelA), NF-κB inhibitor alpha (IκBα), and Extracellular signal-regulated kinase 1/2-Mitogen-activated protein kinase (ERK1/2-MAPK), suggesting that CLK3 inhibits both the NF-κB and MAPK signaling activated by TNFα exposure. Further studies are required to elucidate the mechanism by which CLK3 inhibits the canonical and non-canonical NF-κB pathways. Collectively, these findings reveal CLK3 as a novel negative regulator of NF-κB signaling.

Evaluation of Growth Inhibition for Microcystis aeruginosa with Ultrasonic Irradiation Time (초음파 조사시간에 따른 Microcystis aeruginosa의 성장억제 평가)

  • Kang, Eun Byeol;Joo, Jin Chul;Jang, So Ye;Go, Hyeon Woo;Park, Jung Su;Jeong, Moo Il;Lee, Dong Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.183-193
    • /
    • 2022
  • The growth inhibitory effect of Microcystis aeruginosa according to the ultrasonic irradiation time was evaluated using a large algae sample volume (10 L) for various ultrasonic irradiation times (0.5, 1, 1.5, 2, 2.5 and 3 hr) at a laboratory scale. Based on the analysis of Chl-a and cell number of M. aerginosa, algae growth inhibition was observed with the decrease in Chl-a and cell number in all experimental groups after the ultrasonic irradiation. For the experimental group (T_B, T_C, T_D) with an ultrasonic irradiation time of less than 2 hours, rapid regrowth of algae was observed after growth inhibition, but the experimental group (T_E, T_F, T_G) with an irradiation time of more than 2 hours successfully inhibited algal growth lasting one or two more days. Based on the comparison of the recovery time to initial cell number the experimental group (T_B, T_C, T_D) took less than 20 days whereas the experimental group (T_E, T_F, T_G) took about 30 days. Correspondingly, the experimental group showed a high first order decay rate (𝜅) in proportion to the ultrasonic irradiation time during the growth inhibition period. Additionally, the specific growth rates (𝜇) during regrowth in the experimental group with irradiation time of more than 2 hours were relatively low compared to those in the experimental group with less than 2 hours. Therefore, ultrasonic irradiation for more than 2 hours is required for long-term (30 days) inhibition of algal growth in stagnant waters. However, the appropriate ultrasonic irradiation time for algae growth inhibition should be determined according to various field conditions such as the volume of stagnant water, water depth, flow rate, algae concentration, etc. Finally, damages to the algal cell surface and cell membrane were clearly observed, and both destruction and disturbance of gas vesicles of M. aeruginosa in the experimental group were discovered, indicating the growth inhibitory effect of Microcystis aeruginosa according to the ultrasonic irradiation time was confirmed.