• Title/Summary/Keyword: Leaves of green tea

Search Result 132, Processing Time 0.022 seconds

Mitigation Effects of Foliar-Applied Hydrogen Peroxide on Drought Stress in Sorghum bicolor (과산화수소 엽면 처리에 의한 수수에서 한발 스트레스 완화 효과)

  • Shim, Doo-Do;Lee, Seung-Ha;Chung, Jong-Il;Kim, Min Chul;Chung, Jung-Sung;Lee, Yeong-Hun;Jeon, Seung-Ho;Song, Gi-Eun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.113-123
    • /
    • 2020
  • Global climatic change and increasing climatic instability threaten crop productivity. Due to climatic change, drought stress is occurring more frequently in crop fields. In this study, we investigated the effect of treatment with hydrogen peroxide (H2O2) before leaf development on the growth and yield of sorghum for minimizing the damage of crops to drought. To assess the effect of H2O2 on the growth of sorghum plant, 10 mM H2O2 was used to treat sorghum leaves at the 3-leaf stage during growth in field conditions. Plant height, stem diameter, leaf length, and leaf width were increased by 7.6%, 9.6%, 8.3% and 11.5%, respectively. SPAD value, chlorophyll fluorescence (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were increased by 3.0%, 4.9%, 26.0%, 23.4% and 12.7%, respectively. The amount of H2O2 in the leaf tissue of sorghum plant treated with 10 mM H2O2 was 0.7% of the applied amount after 1 hour. The level increased to approximately 1.0% after 6 hours. The highest antioxidant activity measured by the Oxygen Radical Absorbance Capacity assay was 847.3 µmol·g-1 at 6 hour after treatment. However, in the well-watered condition, the concentration of H2O2 in the plant treated by the foliar application of H2O2 was 227.8 µmol·g-1 higher than that of the untreated control. H2O2 treatment improved all the yield components and yield-related factors. Panicle length, plant dry weight, panicle weight, seed weight per plant, seed weight per unit area, and thousand seed weight were increased by 8.8%, 18.0%, 24.4%, 24.7%, 29.9% and 7.1%, respectively. Proteomic analysis showed that H2O2 treatment in sorghum increased the tolerance to drought stress and maintained growth and yield by ameliorating oxidative stress.

Main constituents and bioactivities of different parts of aronia (Aronia melanocarpa) (아로니아 부위별 주요 성분 정량 및 생리활성 평가)

  • Gim, Sung Woong;Chae, Kyu Seo;Lee, Su Jung;Kim, Ki Deok;Moon, Jae-Hak;Kwon, Ji Wung
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.226-236
    • /
    • 2020
  • This study was designed to evaluate the biological activities and main constituents of different parts (fruit, leaf, and stem) of aronia (Aronia melanocarpa). The total phenolic and flavonoidcontents, DPPH and ABTS+ radical-scavenging activity, reducing power, and ferric reducing/antioxidant power were observed to follow the order of: leaves > stems > fruits, regardless of extraction solvents. The inhibitory activity against lipopolysaccharide-induced NO production in Raw 264.7 cells was significantly higher in the aronialeaf extract-treated group than in the groups treated with stem and fruit extracts. The ultra-performance liquid chromatography (UPLC) analysis was mainly composed of routine. In addition, the highest content level was measured in the case of the catechinmemberepigallocatechin witha higher value than that found in green tea. Theresults of this studyprovide useful information for understanding the chemical constituents and biological activities of aroniafruits and byproducts.