• 제목/요약/키워드: Least Squares Estimator

검색결과 160건 처리시간 0.028초

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권4호
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

Realtime Clock Skew Estimator for Time Synchronization in Wireless Sensor Networks of WUSB and WBAN (무선 센서네트워크에서의 시각동기를 위한 실시간 클럭 스큐 추정)

  • Hur, Kyeong
    • Journal of Korea Multimedia Society
    • /
    • 제15권11호
    • /
    • pp.1391-1398
    • /
    • 2012
  • Time synchronization is crucial in wireless sensor networks such as Wireless USB and WBAN for diverse purposes from the MAC to the application layer. This paper proposes online clock skew estimators to achieve energy-efficient time synchronization for wireless sensor networks. By using recursive least squares estimators, we not only reduce the amount of data which should be stored locally in a table at each sensor node, but also allow offset and skew compensations to be processed simultaneously. Our skew estimators can be easily integrated with traditional offset compensation schemes. The results of simulation and experiment show that the accuracy of time synchronization can be greatly improved through our skew compensation algorithm.

A GPS Positioning and Receiver Autonomous Integrity Monitoring Algorithm Considering SA Fade Away (고의잡음의 제거를 고려한 GPS항법 및 무결성 검정알고리즘)

  • Choi, Jae-Youl;Park, Soon;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제8권5호
    • /
    • pp.425-433
    • /
    • 2002
  • After the removal of SA (Selective Availability), horizontal accuracy of 25m(2dRMS) is easily obtained using GPS (Global Positioning System). In this paper, the error characteristics without SA are analyzed and a navigation algorithm concerns this error characteristics is proposed to further improve the accuracy. The proposed method utilizes the relationship between elevation angle and errors that are remained after ionospheric and troposheric delay compensation. The relationship is derived from real measurements and used as a weighting matrix of weighted least squares estimator. Furthermore, a RAIM (Receiver Autonomous Integrity Monitoring) technique is included to remove abnormal measurements affected by multi-path or low SNR (Signal-to-Noise Ratio). It is shown that using the proposed method, more than 4 times accurate result, which is comparable with DGPS (Differential GPS), can be obtained from experiments with real data. Besides accuracy and reliability, the proposed method reduces large jumps in position and maintains better performance than a method using mask angle to completely remove satellites below this mask angle. Thus it is expected that the proposed method can be efficiently applied to land navigation where some satellites are blocked by building or forest.

Learning Input Shaping Control with Parameter Estimation for Nonlinear Actuators (비선형 구동기의 변수추정을 통한 학습입력성형제어기)

  • Kim, Deuk-Hyeon;Sung, Yoon-Gyung;Jang, Wan-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제35권11호
    • /
    • pp.1423-1428
    • /
    • 2011
  • This paper proposes a learning input shaper with nonlinear actuator dynamics to reduce the residual vibration of flexible systems. The controller is composed of an estimator of the time constant of the nonlinear actuator dynamics, a recursive least squares method, and an iterative updating algorithm. The updating mechanism is modified by introducing a vibration measurement function to cope with the dynamics of nonlinear actuators. The controller is numerically evaluated with respect to parameter convergence and control performance by using a benchmark pendulum system. The feasibility and applicability of the controller are demonstrated by comparing its control performance to that of an existing controller algorithm.

Macroeconomic Dynamics of Standard of Living in South Asia

  • Siddiqui, Muhammad Ayub;Mehmood, Zahid
    • Journal of Distribution Science
    • /
    • 제11권7호
    • /
    • pp.5-13
    • /
    • 2013
  • Purpose - The study explores social well-being of the community of five selected countries of the South Asia: India, Pakistan, Sri Lanka, Nepal and Bangladesh. The study compares effectiveness of macroeconomic policies across the countries through interactive effects of the macroeconomic policy variables with the regional dummy variables. Research design, data, and methodology - Using the data set for the period of 1990-2008, this study employs panel data models, quantile regression methods, and the fixed effects method, which the constant is treated as group or country-specific. The model can also be known as the least-squares dummy variables estimator. Results - The results reveal significant chances of improvement in the well-being of the people while living in India and Pakistan as compared to the other countries of the region where India relatively stands with better chances of providing opportunities to improve the well-being of the people. Conclusions - This study recommends an increasing allocation of budget on education and health in order to enhance social well-being in the South Asian region. Inflation is the main cause of deteriorating well-being of the South Asian community by escalating the cost of living. Comprehensive study is recommended by employing the micro data models in the region.

Real-Time Heart Rate Monitoring System based on Ring-Type Pulse Oximeter Sensor

  • Park, Seung-Min;Kim, Jun-Yeup;Ko, Kwang-Eun;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.376-384
    • /
    • 2013
  • With the continuous aging of the populations in developed countries, the medical requirements of the aged are expected to increase. In this paper, a ring-type pulse oximeter finger sensor and a 24-hour ambulatory heart rate monitoring system for the aged are presented. We also demonstrate the feasibility of extracting accurate heart rate variability measurements from photoelectric plethysmography signals gathered using a ring-type pulse oximeter sensor attached to the finger. We designed the heart rate sensor using a CPU with built-in ZigBee stack for simplicity and low power consumption. We also analyzed the various distorted signals caused by motion artifacts using a FFT, and designed an algorithm using a least squares estimator to calibrate the signals for better accuracy.

GPS-Based Orbit Determination for KOMPSAT-5 Satellite

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Young-Rok;Roh, Kyoung-Min;Jung, Ok-Chul;Kim, Hae-Dong
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.487-496
    • /
    • 2011
  • Korea Multi-Purpose Satellite-5 (KOMPSAT-5) is the first satellite in Korea that provides 1 m resolution synthetic aperture radar (SAR) images. Precise orbit determination (POD) using a dual-frequency IGOR receiver data is performed to conduct high-resolution SAR images. We suggest orbit determination strategies based on a differential GPS technique. Double-differenced phase observations are sampled every 30 seconds. A dynamic model approach using an estimation of general empirical acceleration every 6 minutes through a batch least-squares estimator is applied. The orbit accuracy is validated using real data from GRACE and KOMPSAT-2 as well as simulated KOMPSAT-5 data. The POD results using GRACE satellite are adjusted through satellite laser ranging data and compared with publicly available reference orbit data. Operational orbit determination satisfies 5 m root sum square (RSS) in one sigma, and POD meets the orbit accuracy requirements of less than 20 cm and 0.003 cm/s RSS in position and velocity, respectively.

Design of a Channel Estimator for the LTE System Based on the Multirate Signal Processing (다속신호처리 기법을 이용한 LTE 시스템 채널 추정기법 설계)

  • Yoo, Kyung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제59권11호
    • /
    • pp.2108-2113
    • /
    • 2010
  • The Long Term Evolution (LTE) system is based on the Orthogonal Frequency Division Multiplexing (OFDM) and relies its channel estimation on the lattice-type pilot samples in the multipath fading channel environment. The estimation of the channel frequency response (CFR) makes use of the least squares estimate (LSE) for each pilot samples, followed by an interpolation both in time- and in frequency-domain to fill up the channel estimates for subcarriers corresponding to data samples. Any interpolation scheme could be adopted for this purpose. Depending on the requirements of the target system, we may choose a simple linear interpolation or a sophisticated one. For any choice of an interpolation scheme, these is a trade-off between estimation accuracy and numerical cost. For those wireless communication systems based on the OFDM and the preamble-type pilot structure, the DFT-based channel estimation and its variants have been successfully. Yet, it may not be suitable for the lattice-type pilot structure, since the pilot samples are not sufficient to provide an accurate estimate and it is known to be sensitive to the location as well as the length of the time-domain window. In this paper, we propose a simple interpolated based on the upsampling mechanism in the multirate signal processing. The proposed method provides an excellent alternative to the DFT-based methods in terms of numerical cost and accuracy. The performance of the proposed technique is verified on a multipath environment suggested on a 3GPP LTE specification.

OFDM Channel Estimation with Jammed Pilot Excision Method under Narrow-Band Jamming (협대역 재밍환경에서 재밍된 파일럿 제거 방법을 이용한 OFDM시스템의 채널추정에 관한 연구)

  • Han, Myeong-Su;Yu, Tak-Ki;Kim, Ji-Hyung;Kwak, Kyung-Chul;Han, Seung-Youp;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제32권2C호
    • /
    • pp.166-173
    • /
    • 2007
  • In Orthogonal Frequency Division Multiplexing (OFDM) systems, Narrow-Band Jamming (NBJ) over pilot tones used for channel estimation degrades the system performance. In this paper, we propose a new jammed pilot detection and elimination algorithm to overcome this problem. Moreover, the average Mean-Squared Error (MSE) on one OFDM symbol both under jammed and removed pilot subcarrier is analyzed. And then, the Symbol Error Rate (SER) performance of the channel estimation scheme using the proposed algorithm is evaluated by simulation. We can confirm that the channel estimator with the proposed algorithm improves the channel estimation performance at a high jamming power.

A Consideration on ML Blind Signal Estimation based on Finite-Alphabet Characteristic in QPSK Modulation (QPSK 신호 입력시스템에서의 유한 알파벹 기반 ML 블라인드 신호 추정 비교)

  • Kwon, S.M.;Kim, S.J.;Lee, J.M.;Kim, C.K.;Cheon, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.685-688
    • /
    • 2003
  • In this paper, a performance comparison between two blind signal estimation algorithms in a LTI channel is considered. The two algorithms, Iterative Least-Squares with Projection (ILSP) and a modified ILSP, are based on the finite-alphabet property of input symbols. This case typically arises in a multiple access system with a sensor array antenna at the receiving end. We start with the formulation of a maximum-likelihood (ML) estimation problem under an additive white Gaussian noise assumption. A blind ML estimator is derived with its iterative algorithm for calculation. Then we narrow down the consideration of this problem to QPSK case so that a modified algorithm is proposed for $\pi$/4-QPSK case. The modified version is compared with the original ILSP algorithm in terms of the rate of the convergence to global minima. A computer simulation shows that the modified algorithm gives a better performance. This result implies that the performance of the blind separation algorithms may be greatly improved by adopting a smart coding scheme with rich structure.

  • PDF