• Title/Summary/Keyword: Learning-Based Classifiers

Search Result 207, Processing Time 0.022 seconds

Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis (최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가)

  • Shim, Se-Yong;Hwang, Doo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.73-81
    • /
    • 2015
  • The paper proposes a prototype selection method and evaluates the generalization performance of standard algorithms and prototype based classification learning. The proposed prototype classifier defines multidimensional spheres with variable radii within class areas and generates a small set of training data. The nearest-neighbor classifier uses the new training set for predicting the class of test data. By decomposing bias and variance of the mean expected error value, we compare the generalization errors of k-nearest neighbor, Bayesian classifier, prototype selection using fixed radius and the proposed prototype selection method. In experiments, the bias-variance changing trends of the proposed prototype classifier are similar to those of nearest neighbor classifiers with all training data and the prototype selection rates are under 27.0% on average.

Learning and Performance Comparison of Multi-class Classification Problems based on Support Vector Machine (지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교)

  • Hwang, Doo-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1035-1042
    • /
    • 2008
  • The support vector machine, as a binary classifier, is known to surpass the other classifiers only in binary classification problems through the various experiments. Even though its theory is based on the maximal margin classifier, the support vector machine approach cannot be easily extended to the multi-classification problems. In this paper, we review the extension techniques of the support vector machine toward the multi-classification and do the performance comparison. Depending on the data decomposition of the training data, the support vector machine is easily adapted for a multi-classification problem without modifying the intrinsic characteristics of the binary classifier. The performance is evaluated on a collection of the benchmark data sets and compared according to the selected teaming strategies, the training time, and the results of the neural network with the backpropagation teaming. The experiments suggest that the support vector machine is applicable and effective in the general multi-class classification problems when compared to the results of the neural network.

  • PDF

Radiomics-based Biomarker Validation Study for Region Classification in 2D Prostate Cross-sectional Images (2D 전립선 단면 영상에서 영역 분류를 위한 라디오믹스 기반 바이오마커 검증 연구)

  • Jun Young, Park;Young Jae, Kim;Jisup, Kim;Kwang Gi, Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.25-32
    • /
    • 2023
  • Recognizing the size and location of prostate cancer is critical for prostate cancer diagnosis, treatment, and predicting prognosis. This paper proposes a model to classify the tumor region and normal tissue with cross-sectional visual images of prostatectomy tissue. We used specimen images of 44 prostate cancer patients who received prostatectomy at Gachon University Gil Hospital. A total of 289 prostate slice images consist of 200 slices including tumor region and 89 slices not including tumor region. Images were divided based on the presence or absence of tumor, and a total of 93 features from each slice image were extracted using Radiomics: 18 first order, 24 GLCM, 16 GLRLM, 16 GLSZM, 5 NGTDM, and 14 GLDM. We compared feature selection techniques such as LASSO, ANOVA, SFS, Ridge and RF, LR, SVM classifiers for the model's high performances. We evaluated the model's performance with AUC of the ROC curve. The results showed that the combination of feature selection techniques LASSO, Ridge, and classifier RF could be best with an AUC of 0.99±0.005.

A Unicode based Deep Handwritten Character Recognition model for Telugu to English Language Translation

  • BV Subba Rao;J. Nageswara Rao;Bandi Vamsi;Venkata Nagaraju Thatha;Katta Subba Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.101-112
    • /
    • 2024
  • Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.

Detail Focused Image Classifier Model for Traditional Images (전통문화 이미지를 위한 세부 자질 주목형 이미지 자동 분석기)

  • Kim, Kuekyeng;Hur, Yuna;Kim, Gyeongmin;Yu, Wonhee;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.85-92
    • /
    • 2017
  • As accessibility toward traditional cultural contents drops compared to its increase in production, the need for higher accessibility for continued management and research to exist. For this, this paper introduces an image classifier model for traditional images based on artificial neural networks, which converts the input image's features into a vector space and by utilizing a RNN based model it recognizes and compares the details of the input which enables the classification of traditional images. This enables the classifiers to classify similarly looking traditional images more precisely by focusing on the details. For the training of this model, a wide range of images were arranged and collected based on the format of the Korean information culture field, which contributes to other researches related to the fields of using traditional cultural images. Also, this research contributes to the further activation of demand, supply, and researches related to traditional culture.

Automatic semantic annotation of web documents by SVM machine learning (SVM 기계학습을 이용한 웹문서의 자동 의미 태깅)

  • Hwang, Woon-Ho;Kang, Sin-Jae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.2
    • /
    • pp.49-59
    • /
    • 2007
  • This paper is about an system which can perform automatic semantic annotation to actualize "Semantic Web." Since it is impossible to tag numerous documents manually in the web, it is necessary to gather large Korean web documents as training data, and extract features by using natural language techniques and a thesaurus. After doing these, we constructed concept classifiers through the SVM (support vector machine) teaming algorithm. According to the characteristics of Korean language, morphological analysis and syntax analysis were used in this system to extract feature information. Based on these analyses, the concept code is mapped with Kadokawa thesaurus, which made it possible to map similar words and phrase to one concept code, to make training vectors. This contributed to rise the recall of our system. Results of the experiment show the system has a some possibility of semantic annotation.

  • PDF

Pattern Classification of Retinitis Pigmentosa Data for Prediction of Prognosis (망막색소변성 데이터의 예후 예측을 위한 패턴 분류)

  • Kim, Hyun-Mi;Woo, Yong-Tae;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.701-710
    • /
    • 2012
  • Retinitis Pigmentosa(RP) is a common hereditary disease. While they have been normally living, those who have this symptom feel frustration and pain by the damage of visual acuity. At the national level, the loss of the economic activity due to the reduction of economically active population will be also greater. There is an urgent need for the base study that can provide the clinical prognosis information of RP disease. In this study, we suggest that it is possible to predict prognosis through the pattern classification of RP data. Statistical processing results through statistical software like SPSS(Statistical Package for the Social Service) were mainly applied for the conventional study in data analysis. However, machine learning and automatic pattern classification was applied to this study. SVM(Support Vector Machine) and other various pattern classifiers were used for it. The proposed method confirmed the possibility of prognostic prediction based on the result of automatically classified RP data by SVM classifier.

Automatic Wood Species Identification of Korean Softwood Based on Convolutional Neural Networks

  • Kwon, Ohkyung;Lee, Hyung Gu;Lee, Mi-Rim;Jang, Sujin;Yang, Sang-Yun;Park, Se-Yeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.797-808
    • /
    • 2017
  • Automatic wood species identification systems have enabled fast and accurate identification of wood species outside of specialized laboratories with well-trained experts on wood species identification. Conventional automatic wood species identification systems consist of two major parts: a feature extractor and a classifier. Feature extractors require hand-engineering to obtain optimal features to quantify the content of an image. A Convolutional Neural Network (CNN), which is one of the Deep Learning methods, trained for wood species can extract intrinsic feature representations and classify them correctly. It usually outperforms classifiers built on top of extracted features with a hand-tuning process. We developed an automatic wood species identification system utilizing CNN models such as LeNet, MiniVGGNet, and their variants. A smartphone camera was used for obtaining macroscopic images of rough sawn surfaces from cross sections of woods. Five Korean softwood species (cedar, cypress, Korean pine, Korean red pine, and larch) were under classification by the CNN models. The highest and most stable CNN model was LeNet3 that is two additional layers added to the original LeNet architecture. The accuracy of species identification by LeNet3 architecture for the five Korean softwood species was 99.3%. The result showed the automatic wood species identification system is sufficiently fast and accurate as well as small to be deployed to a mobile device such as a smartphone.

Face Detection System Based on Candidate Extraction through Segmentation of Skin Area and Partial Face Classifier (피부색 영역의 분할을 통한 후보 검출과 부분 얼굴 분류기에 기반을 둔 얼굴 검출 시스템)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • In this paper we propose a face detection system which consists of a method of face candidate extraction using skin color and a method of face verification using the feature of facial structure. Firstly, the proposed extraction method of face candidate uses the image segmentation and merging algorithm in the regions of skin color and the neighboring regions of skin color. These two algorithms make it possible to select the face candidates from the variety of faces in the image with complicated backgrounds. Secondly, by using the partial face classifier, the proposed face validation method verifies the feature of face structure and then classifies face and non-face. This classifier uses face images only in the learning process and does not consider non-face images in order to use less number of training images. In the experimental, the proposed method of face candidate extraction can find more 9.55% faces on average as face candidates than other methods. Also in the experiment of face and non-face classification, the proposed face validation method obtains the face classification rate on the average 4.97% higher than other face/non-face classifiers when the non-face classification rate is about 99%.

HyperConv: spatio-spectral classication of hyperspectral images with deep convolutional neural networks (심층 컨볼루션 신경망을 사용한 초분광 영상의 공간 분광학적 분류 기법)

  • Ko, Seyoon;Jun, Goo;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.859-872
    • /
    • 2016
  • Land cover classification is an important tool for preventing natural disasters, collecting environmental information, and monitoring natural resources. Hyperspectral imaging is widely used for this task thanks to sufficient spectral information. However, the curse of dimensionality, spatiotemporal variability, and lack of labeled data make it difficult to classify the land cover correctly. We propose a novel classification framework for land cover classification of hyperspectral data based on convolutional neural networks. The proposed framework naturally incorporates full spectral features with the information from neighboring pixels and has advantages over existing methods that require additional feature extraction or pre-processing steps. Empirical evaluation results show that the proposed framework provides good generalization power with classification accuracies better than (or comparable to) the most advanced existing classifiers.