• Title/Summary/Keyword: Learning transfer

Search Result 762, Processing Time 0.03 seconds

The Impact of Education-Orientation on Technology Innovation and Company Outcome : Focusing on Korean Companies in China (기업의 교육지향성이 기술혁신과 기업성과에 미치는 영향 : 대 중국 투자 한국기업을 중심으로)

  • Kim, Jung Hoon;Lim, Young Taek
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.4
    • /
    • pp.231-249
    • /
    • 2014
  • We define $21^{st}$ century as an amalgamation of globalization and localization, or Glocalization. Additionally, due to the increasing supply of smart phones and wide usage of social networking services, the ability to utilize such global and regional information has increased a coperation's competitiveness in its market, and even the business models have evolved from the conventional "production and distribution" to E-commerce, through which either a direct or a non-direct transaction is possible. My hypothesis is that the ability to adapt to this trend is possible through transfer of learning, and consequently, this will have an impact on company's performance. Thus, this thesis analyzes the mid- to the long-term impact of such ability and environmental factors on the performance and technology innovation of Korean companies in China. Ultimately, this study intends to engender a basic foundation for a corporation's management strategy in China. Finally this research focuses on those Korean companies in China only and on the proof of influential factors' impact on technological innovation and technological innovation's impact on those corporations' future performances. Section I is an abstract and section II, the case examines the uniqueness and current status of Korean companies in China identifies the concept and the definition of influential factors such as education-orientation, technological innovation, and performance, and then scrutinizes each factors through a closer look at their past researches. Section III explains the thesis model, the survey's method and target, the thesis, variable factors, the content, and the method of analysis. In section IV, the thesis is proved based on the outcome of the survey. The result in Section V highlights the high comprehension of technological innovation: both education-orientation and technological innovation prove to have a positive (+) correlation with the performance. The vision on education orientation proves to have a positive (+) influence on technological innovation. The vision on education-orientation and technological innovation prove to have a positive (+) influence individually on company's performance.

A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model (키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법)

  • Cho, Won-Chin;Rho, Sang-Kyu;Yun, Ji-Young Agnes;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.

A Comparative Study on Communication of Agricultural Innovation (농업 기술 전파 커뮤니케이션에 관한 비교 연구)

  • Kim, Sung-Soo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.7 no.1
    • /
    • pp.121-136
    • /
    • 2000
  • This study reports on a comparison between the Korean diffusion of agricultural innovation or extension service and the cooperative extension service in the United States of America. It focuses on relevant differences between the two systems and provides recommendation for improvement of the Korean system to insure success in important areas related to the diffusion of agricultural innovations. After a comparative study on diffusion of innovations it is clear that: in order to have a productive agriculture that makes effective and efficient use of natural resources and helps achieve sustainability goals, a mechanism that delivers knowledge to agricultural communities must be established and maintained. This mechanism is clearly an agricultural extension service that is cooperatively funded by federal, state and local governments and that insures participation of constituents in the process of establishing priorities and evaluating achievements. The success of US agriculture, the most productive in the world, is to a large degree to the Cooperative Extension Service. Based on the results of this study and the differences of the United States and Korea, the following recommendations should be emphasized for more effective communication for agricultural innovation and rural development in Korea: 1) In order to insure that extension educators are high caliber professional individuals, it is important to establish a system that nationally recognizes these individuals as such, and that provides a professional development path. 2) The results of the decision of transfer of extension educators to local governments has not yielded positive outcomes, especially in terms of professional status. It is clearly demonstrable that valuable professionals are leaving the service, that local governments do not have the will and resources to implement a successful extension program. 3) Because of the critical importance of diffusing innovations to agricultural producers in order to insure and quality and steady food supply, it is of critical importance that these issues be addressed before the extension service is further deteriorated. Given the cement situation, it is clear that the extension service should become nationally supported again in cooperation with local and state governments and that extension professionals be given appropriate rank at the national level, commesurate with their peers in research and teaching. 4) The common current committee practice of lengthy reporting and short discussion needs to be changed to one that results in char, brief and substantive action oriented goals. Joint participation by researchers, extension educators and farmers should be encouraged in planning, implementation and evaluation of communication for agricultural innovations. Roles and functions of committees for institutional cooperation, and or agricultural extension committees should be enlarged. 5) Extension educators should be encouraged to adopt new communication technologies to improve their diffusion of innovations methods. Agricultural institutions and organizations should be encouraged to adopt farmer-first and or client-oriented approach in agricultural extension and diffusion of agricultural technologies. The number, complexity and rapid change of information in agricultural extension require the development of a computer based information and report system to support agricultural extension. 6) To facilitate and expand the further development of communication for agricultural innovation and rural development, agricultural communication programs in universities especially in colleges of agriculture and life sciences. 7) To strengthening the sense of national and social responsibility communication for agricultural innovation and rural development among students in agricultural colleges and universities through participation in learning activities by proactive recruitment. 8) To establish and reinforce a policy that insures participation in communication for agricultural innovation and regal development activities. 9) To improve further development of communication for agricultural innovation and rural development in Korea, more research activities should be encouraged.

  • PDF

Comparative analysis of RN-BSN Program in Korea and U. S. A. (간호학사 편입학제도의 교과과정 비교분석)

  • Lee Ok-Ja;Kim Hyun-Sil
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.3
    • /
    • pp.99-116
    • /
    • 1997
  • In response of the increasing demand for professional degree in nursing, some university in Korea offers RN-BSN program for R. N. from diploma in nursing. However, RN-BSN program in Korea is in formative period. Therefore, the purpose of this survey study is for the comparative analysis of RN-BSN curriculum in Korea and U.S.A. In this study, subjects consisted of 18 department of nursing in university and 5 RN-BSN programs in Korea and 18 department of nursing in university and 12 RN-BSN programs in U.S.A. For earn the degree of Bachelor of Science in Nursing, the student earns 134 of mean credits in U.S.A., whereas 150.3 of mean credits in Korea. The mean credit for clinical pratice is 30.1 in U.S.A., whereas 23.9 in Korea. Students are assigned to individually planned clinical experiences under the direction of a preceptor in U.S.A. In RN-BSN program, total mean credits through lecture and clinical practice for earn the degree of BSN is 35.5(lecture : 27.7, practice ; 7.8)in U.S.A., whereas,48.1 (lecture;42.1, practice;6.0) in Korea. RN-BSN program can be taken on a full-or-part time basis in U.S.A., whereas didn't in Korea. Especially, emphasis is place on the advanced nursing practicum that focus on the role of the professional nurse in providing health care to individuals, families, and groups in community setting in U.S.A. 27.7 of mean credits was earned through lecture in U.S.A., whereas 42.1 of mean credits in Korea. It means that RN-BSN program in Korea is the lesser development in teaching method and appraisal method than in U.S.A. Students of RN-BSN program in U.S.A. can earns credit through CLEP, NLN achievement test, portfolio review session etc as well as lecture. Therefore, the authors suggests some recommendations for the development of curriculum of RN-BSN program in Korea based on comparative analysis of RN-BSN curricula in U.S.A. and Korea. 1. The curriculum of RN-BSN Program in nursing was required to do some alterations. Nursing care, today, is complex and ever changing. According to change of public need, RN-BSN curriculum intensified primary care program in community setting, geriatric nursing, marketing skill, computer language. 2. The various and new methods of earning credit should be developed. That is, the students will earn credits through the transfer of previous nursing college credits, accredited examination of university, advanced placement examination, portfolio review session, case study, report, self-directed learning and so on. Flexible teaching place should ile offered. 3. Flexible teaching place should be offered. The RN-BSN curriculum should accommodate each RN student's geographical needs and school/work schedule. Therefore, the university should search a variety of teaching places and the RN students can obtain their degrees comfortably throughout the teaching place such as lecture room inside the health care agency and establishment of the branch school in each student's residence area. 4. The RN-BSN program should offer a long distance education to place-bound RN student in many parts of Korea. That is, from the main office of university, the RN-BSN courses are delivered to many areas by Internet, EdNet (satellite telecommunication) and other non-traditional methods. 5. For allowing RN student to take nursing courses, program length should be various, depending upon the student's study/work schedule. That is, the various term systems such as semester, three terms, quarter systems and the student's status like full time or part time should be considered. Therefore, the student can take advantage of the many other educational and professional opportunities, making them available during the school year.

  • PDF

Predicting stock movements based on financial news with systematic group identification (시스템적인 군집 확인과 뉴스를 이용한 주가 예측)

  • Seong, NohYoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts. The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance. To overcome the limitation, we first used random matrix theory with text mining for stock prediction. Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies. Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms. The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals. The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.

High School Student Perception of the Relationships between Solar and Visible Radiation and between Terrestrial and Infrared Radiation (태양 복사와 가시광선 복사 및 지구 복사와 적외선 복사의 관계에 대한 고등학생들의 인식)

  • Lee, Jong-Jin;Seo, Eun-Kyoung;Ahn, Yumin
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.312-323
    • /
    • 2022
  • This study began with the hypothesis of whether "solar radiation" and "terrestrial radiation" can be replaced by "visible radiation" and "infrared radiation", respectively. To this end, we investigated the perceptions of high school students who completed the Earth Science I course through a questionnaire to reveal how they perceived each concept. We also analyzed the descriptions and illustrations of textbooks that may have affected their perceptions. All of the students who participated in the questionnaire recognized solar radiation as radiation emitted only in the visible light region. About 35% of the students recognized convection, conduction, and latent heat as energy transfer by radiation in the Earth's heat budget. By analyzing six types of Earth Science I textbooks in the 2015 revised curriculum, we observed that two types introduced the terms "shortwave radiation" and "longwave radiation" but had no explanation for them, while the other two described solar radiation as "radiation mainly in the visible light region" or "radiation in short wavelengths". Regarding solar and terrestrial radiation in the last two types, there was no explanation for the wavelength regions, or ambiguous terms such as "short wavelength" and "long wavelength" were used. In addition, the two textbooks contained some errors in the illustration of the energy budget. Considering that textbooks described solar and terrestrial radiation without defining the exact terms for shortwave and longwave radiation, learners are likely to recognize solar and terrestrial radiation as visible and infrared radiation, respectively. This finding implies that vague statements or errors in textbooks can cause or reproduce students' misconceptions. The discussion in this study is expected to be used as a helpful reference material for teaching and learning processes regarding the Earth's radiation equilibrium and heat budget, and thereby contribute to proposing reasonable description plans for future textbook writing.

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.

An Analysis of Web Services in the Legal Works of the Metropolitan Representative Library (광역대표도서관 법정업무의 웹서비스 분석)

  • Seon-Kyung Oh
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.2
    • /
    • pp.177-198
    • /
    • 2024
  • Article 22(1) of the Library Act, which was completely revised in December 2006, stipulated that regional representative libraries are statutory organizations, and Article 25(1) of the Library Act, which was revised again in late 2021, renamed them as metropolitan representative libraries and expanded their duties. The reason why cities and provinces are required to specify or establish and operate metropolitan representative libraries is that in addition to their role as public libraries for public information use, cultural activities, and lifelong learning as stipulated in Article 23 of the Act, they are also responsible for the legal works of metropolitan representative libraries as stipulated in Article 26, and lead the development of libraries and knowledge culture by serving as policy libraries, comprehensive knowledge information centers, support and cooperation centers, research centers, and joint preservation libraries for all public libraries in the city or province. Therefore, it is necessary to analyze and diagnose whether the metropolitan representative library has been faithfully fulfilling its legal works for the past 15 years(2009-2023), and whether it is properly providing the results of its statutory planning and implementation on its website to meet the digital and mobile era. Therefore, this study investigated and analyzed the performance of the metropolitan representative library for the last two years based on the current statutory tasks and evaluated the extent to which it provides them through its website, and suggested complementary measures to strengthen its web services. As a result, it was analyzed that the web services for legal works that the metropolitan representative library should perform are quite insufficient and inadequate, so it suggested complementary measures such as building a website for legal works on the homepage, enhancing accessibility and visibility through providing an independent website, providing various policy information and web services (portal search, inter-library loan, one-to-one consultation, joint DB construction, data transfer and preservation, etc.), and ensuring digital accessibility of knowledge information for the vulnerable.

Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction (상추잎 너비와 길이 예측을 위한 합성곱 신경망 모델 비교)

  • Ji Su Song;Dong Suk Kim;Hyo Sung Kim;Eun Ji Jung;Hyun Jung Hwang;Jaesung Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.434-441
    • /
    • 2023
  • Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.