• 제목/요약/키워드: Learning time

검색결과 6,459건 처리시간 0.027초

기업교육을 위한 인터넷 원격훈련 학습과정 모니터링 연구 (Learning Process Monitoring of e-Learning for Corporate Education)

  • 김도헌;정효정
    • 산경연구논집
    • /
    • 제9권8호
    • /
    • pp.35-40
    • /
    • 2018
  • Purpose - The purpose of this study is to conduct a monitoring study on the learning process of e-learning contents. This study has two research objectives. First, by conducting monitoring research on the learning process, we aim to explore the implications for content development that reflects future student needs. Second, we want to collect empirical basic data on the estimation of appropriate amount of learning. Research design, data, and methodology - This study is a case study of learner's learning process in e-learning. After completion of the study, an in-depth interview was made after conducting a test to measure the total amount of cognitive load and the level of engagement that occurred during the learning process. The tool used to measure cognitive load is NASA-TLX, a subjective cognitive load measurement method. In the monitoring process, we observe external phenomena such as page movement and mouse movement path, and identify cognitive activities such as Think-Aloud technique. Results - In the total of three research subjects, the two courses showed excess learning time compared to the learning time, and one course showed less learning time than the learning time. This gives the following implications for content development. First, it is necessary to consider the importance of selecting the target and contents level according to the level of the subject. Second, it is necessary to design the learner participation activity that meets the learning goal level and to calculate the appropriate time accordingly. Third, it is necessary to design appropriate learning support strategy according to the learning task. This should be considered in designing lessons. Fourth, it is necessary to revitalize contents design centered on learning activities such as simulation. Conclusions - The implications of the examination system are as follows. First, it can be confirmed that there is difficulty in calculating the amount of learning centered on learning time and securing objective objectivity. Second, it can be seen that there are various variables affecting the actual learning time in addition to the content amount. Third, there is a need for reviewing the system of examination of learning amount centered on 'learning time'.

Q-learning을 이용한 이동 로봇의 실시간 경로 계획 (Real-Time Path Planning for Mobile Robots Using Q-Learning)

  • 김호원;이원창
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.991-997
    • /
    • 2020
  • 강화학습은 주로 순차적인 의사 결정 문제에 적용되어 왔다. 특히 최근에는 신경망과 결합한 형태로 기존에는 해결하지 못한 분야에서도 성공적인 결과를 내고 있다. 하지만 신경망을 이용하는 강화학습은 현장에서 즉각적으로 사용하기엔 너무 복잡하다는 단점이 있다. 본 논문에서는 학습이 쉬운 강화학습 알고리즘 중 하나인 Q-learning을 이용하여 이동 로봇의 경로를 생성하는 알고리즘을 구현하였다. Q-table을 미리 만드는 방식의 Q-learning은 명확한 한계를 가지기 때문에 실시간으로 Q-table을 업데이트하는 실시간 Q-learning을 사용하였다. 탐험 전략을 조정하여 실시간 Q-learning에 필요한 학습 속도를 얻을 수 있었다. 마지막으로 실시간 Q-learning과 DQN의 성능을 비교하였다.

A Study on the Development of Adaptive Learning System through EEG-based Learning Achievement Prediction

  • Jinwoo, KIM;Hosung, WOO
    • 4차산업연구
    • /
    • 제3권1호
    • /
    • pp.13-20
    • /
    • 2023
  • Purpose - By designing a PEF(Personalized Education Feedback) system for real-time prediction of learning achievement and motivation through real-time EEG analysis of learners, this system provides some modules of a personalized adaptive learning system. By applying these modules to e-learning and offline learning, they motivate learners and improve the quality of learning progress and effective learning outcomes can be achieved for immersive self-directed learning Research design, data, and methodology - EEG data were collected simultaneously as the English test was given to the experimenters, and the correlation between the correct answer result and the EEG data was learned with a machine learning algorithm and the predictive model was evaluated.. Result - In model performance evaluation, both artificial neural networks(ANNs) and support vector machines(SVMs) showed high accuracy of more than 91%. Conclusion - This research provides some modules of personalized adaptive learning systems that can more efficiently complete by designing a PEF system for real-time learning achievement prediction and learning motivation through an adaptive learning system based on real-time EEG analysis of learners. The implication of this initial research is to verify hypothetical situations for the development of an adaptive learning system through EEG analysis-based learning achievement prediction.

실시간 적응 학습 제어를 위한 진화연산(I) (Evolutionary Computation for the Real-Time Adaptive Learning Control(I))

  • 장성욱;이진걸
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.724-729
    • /
    • 2001
  • This paper discusses the composition of the theory of reinforcement learning, which is applied in real-time learning, and evolutionary strategy, which proves its the superiority in the finding of the optimal solution at the off-line learning method. The individuals are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations are proposed. It possible to control the control object varied as time changes. As the state value of the control object is generated, applied evolutionary strategy each sampling time because the learning process of an estimation, selection, mutation in real-time. These algorithms can be applied, the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes. In the future, studies are needed on the proof of the theory through experiments and the characteristic considerations of the robustness against the outside disturbances.

  • PDF

An Overview of Learning Control in Robot Applications

  • Ryu, Yeong-Soon
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.6-10
    • /
    • 1996
  • This paper presents an overview of research results obtained by the authors in a series of publications. Methods are developed both for time-varying and time-invariant for linear and nonlinear. for time domain and frequency domain . and for discrete-time and continuous-time systems. Among the topics presented are: 1. Learning control based on integral control concepts applied in the repetition domain. 2. New algorithms that give improved transient response of the indirect adaptive control ideas. 4. Direct model reference learning control. 5 . Learning control based frequency domain. 6. Use of neural networks in learning control. 7. Decentralized learning controllers. These learning algorithms apply to robot control. The decentralized learning control laws are important in such applications becaused of the usual robot decentralized controller structured.

  • PDF

머신러닝 추천모듈이 적용된 맞춤형 학습 플랫폼 효과성 탐색: 학습시간, 자기주도적 학습능력, 수학에 대한 태도, 수학학업성취도를 중심으로 (The effects on the personalized learning platform with machine learning recommendation modules: Focused on learning time, self-directed learning ability, attitudes toward mathematics, and mathematics achievement)

  • 박만구;임현정;김지영;이규하;김미경
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제59권4호
    • /
    • pp.373-387
    • /
    • 2020
  • 본 연구의 목적은 학습 빅데이터 분석을 통해 추천 알고리즘을 스스로 고도화하는 머신러닝 추천모듈이 적용된 개인 맞춤형 학습 플랫폼이 학생들의 학습시간, 자기주도적 학습능력, 수학에 대한 태도, 수학학업성취도에 미치는 영향과 이들 사이의 구조적 관계를 검증하는 것이다. 연구 결과 개인 맞춤형 학습은 학생들의 학습시간, 자기주도적 학습능력, 수학에 대한 태도, 수학학업성취도에 대해 긍정적인 영향을 미치고 있었다. 또한, 맞춤형 학습과 수학에 대한 태도와 수학학업성취도의 관계에서 학습시간과 자기주도적 학습능력의 매개효과가 유의하였다.

물품 출고 시간 최소화를 위한 강화학습 기반 적재창고 내 물품 재배치 (Minimize Order Picking Time through Relocation of Products in Warehouse Based on Reinforcement Learning)

  • 김여진;김근태;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.90-94
    • /
    • 2022
  • In order to minimize the picking time when the products are released from the warehouse, they should be located close to the exit when the products are released. Currently, the warehouse determines the loading location based on the order of the requirement of products, that is, the frequency of arrival and departure. Items with lower requirement ranks are loaded away from the exit, and items with higher requirement ranks are loaded closer from the exit. This is a case in which the delivery time is faster than the products located near the exit, even if the products are loaded far from the exit due to the low requirement ranking. In this case, there is a problem in that the transit time increases when the product is released. In order to solve the problem, we use the idle time of the stocker in the warehouse to rearrange the products according to the order of delivery time. Temporal difference learning method using Q_learning control, which is one of reinforcement learning types, was used when relocating items. The results of rearranging the products using the reinforcement learning method were compared and analyzed with the results of the existing method.

초등학교 저학년 아동의 성별과 생활시간이 자기조절학습능력에 미치는 영향 (Effect of Gender and Time-Use on Elementary School Children's Self-Regulated Learning Ability)

  • 정하나;김유미
    • 한국생활과학회지
    • /
    • 제24권6호
    • /
    • pp.741-753
    • /
    • 2015
  • The purpose of this study was to investigate whether elementary children's time-use and self-regulated learning ability was different according to gender and whether children's gender and time-use effects self-regulated learning ability. Participants were 2,122 children who participated in KCYPS longitudinal study from their first grade to third grade. Time-use was reported by children's parents. Children's self-regulated learning is invented by Yang(2000). Components of self-regulated learning scale was achievement value, mastery goal orientation, action control, academic time management. The major findings were as follows. First, children's self-regulated learning was different according to chidren's gender. Girls' achievement value, mastery goal orientation, academic time management scores were higher than the boys'. Second, children's daily time was different according to their gender. Third, children's daily time-use affected their self-regulated leaning, however children's gender didn't.

Machine Learning Methodology for Management of Shipbuilding Master Data

  • Jeong, Ju Hyeon;Woo, Jong Hun;Park, JungGoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.428-439
    • /
    • 2020
  • The continuous development of information and communication technologies has resulted in an exponential increase in data. Consequently, technologies related to data analysis are growing in importance. The shipbuilding industry has high production uncertainty and variability, which has created an urgent need for data analysis techniques, such as machine learning. In particular, the industry cannot effectively respond to changes in the production-related standard time information systems, such as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to respond swiftly to changes in the production environment. In this study, the lead times for fabrication, assembly of ship block, spool fabrication and painting were predicted using machine learning technology to propose a new management method for the process lead time using a master data system for the time element in the production data. Data preprocessing was performed in various ways using R and Python, which are open source programming languages, and process variables were selected considering their relationships with the lead time through correlation analysis and analysis of variables. Various machine learning, deep learning, and ensemble learning algorithms were applied to create the lead time prediction models. In addition, the applicability of the proposed machine learning methodology to standard work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).

시계열 분석 모형 및 머신 러닝 분석을 이용한 수출 증가율 장기예측 성능 비교 (Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis)

  • 남성휘
    • 무역학회지
    • /
    • 제46권6호
    • /
    • pp.191-209
    • /
    • 2021
  • In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.