• Title/Summary/Keyword: Learning resources

Search Result 1,510, Processing Time 0.029 seconds

A Study on the Methods of Improving the Lifelong Learning City Project Based on the Community Development Theory (지역사회개발론에 근거한 평생학습도시 사업 개선 방안 탐색)

  • Yang, Heung-Kweun
    • The Korean Journal of Community Living Science
    • /
    • v.19 no.2
    • /
    • pp.245-265
    • /
    • 2008
  • The Lifelong Learning City Project has made quantitative expansion as well as qualitative growth since 2001 but the project has been criticized by academic scholars and field practitioners. The Lifelong Learning City Project is a national policy project which has been promoted by the Ministry of Education and Human Resources Development and should be required to make production profits proportional to the amount of public finance. The Lifelong Learning City Project is a community development project intended to promote growth and progress by supporting the community in lifelong learning endeavors. Therefore, the community development theory could offer guidelines to the Lifelong Learning City Project. Based on this assumption, this study intends to investigate the Lifelong Learning City Project at the national, city, and county levels using the community development theory. The improvement methods of the Lifelong Learning City Project are role allotment between national and wide level projects supporting organizations, and the establishment of a system and a long term project policy. In addition, the project is to have a more systematic performance. It is to enhance opportunities for community members' participation, and practice in planning, performance of learning, and the proper performance in regard to the community conditions and specificity. The most important goal of the Lifelong Learning City Project is to support the empowerment of community members by making opportunity planning, practicing and sharing lifelong learning more accessible.

  • PDF

The Effects of Flipped Learning on Self-Directed Learning and Class Satisfaction in a Class of College Physical Therapy Students (플립 러닝(Flipped learning)이 전문대학교 물리치료과 학생들의 자기주도 학습과 수업만족도에 미치는 영향)

  • Chung, Eunjung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.4
    • /
    • pp.63-73
    • /
    • 2018
  • Purpose : This study aims to verify the effects of flipped learning on self-directed learning and class satisfaction in a class of college physical therapy students. Methods : The subjects were 97 students in College A who had registered for musculoskeletal examination and assessment and practice at the second semester of 2017. All subjects were measured with the self-directed learning questionnaire for college student proposed by Lee et al., and the class satisfaction questionnaire proposed by Lee et al., before and after intervention. The collected data were processed using a computerized statistical program SPSS Win version 21.0. Mean, standard deviation, paired t-test and Cronbach's alpha coefficient were calculated. Results : The results showed significant differences in goal setting, identify resources for learning, effort attributed to results, self-reflection of self-directed learning and problem solving excellence, class methods and contents attention and understanding(p<.05), class interest of class satisfaction(p<.05). Conclusion : These results suggest that flipped learning improves learning motivation and attitudes. Therefore, follow-up study is necessary to investigate further the application of flipped learning in various students and teaching methods.

Applying the ADDIE Instructional Design Model to Multimedia Rich Project-based Learning Experiences in the Korean Classroom

  • LEE, Youngmin
    • Educational Technology International
    • /
    • v.7 no.1
    • /
    • pp.81-98
    • /
    • 2006
  • The purpose of this study was to apply the ADDIE instructional design model to develop multimedia rich project-based learning methods for effective instruction in a Korean mechanical engineering high school. This study was conducted as action research based on a high school situation. The study included 40 participants in a class purposively selected from 52 classes at 2080 student high school. Data were collected through observations, surveys and artifacts. Results indicated the multimedia rich project-based learning allowed students to take part in learning activities and there was close cooperation with and among group members to create better products. Also, the flexibility in the project-based learning environment allowed the participants to make decisions about their abilities, resources, and plans. Recommendations and implications for teacher educators as well as in-service and pre-service teachers are also presented.

Design of a ParamHub for Machine Learning in a Distributed Cloud Environment

  • Su-Yeon Kim;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.161-168
    • /
    • 2024
  • As the size of big data models grows, distributed training is emerging as an essential element for large-scale machine learning tasks. In this paper, we propose ParamHub for distributed data training. During the training process, this agent utilizes the provided data to adjust various conditions of the model's parameters, such as the model structure, learning algorithm, hyperparameters, and bias, aiming to minimize the error between the model's predictions and the actual values. Furthermore, it operates autonomously, collecting and updating data in a distributed environment, thereby reducing the burden of load balancing that occurs in a centralized system. And Through communication between agents, resource management and learning processes can be coordinated, enabling efficient management of distributed data and resources. This approach enhances the scalability and stability of distributed machine learning systems while providing flexibility to be applied in various learning environments.

Resource Allocation for Heterogeneous Service in Green Mobile Edge Networks Using Deep Reinforcement Learning

  • Sun, Si-yuan;Zheng, Ying;Zhou, Jun-hua;Weng, Jiu-xing;Wei, Yi-fei;Wang, Xiao-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2496-2512
    • /
    • 2021
  • The requirements for powerful computing capability, high capacity, low latency and low energy consumption of emerging services, pose severe challenges to the fifth-generation (5G) network. As a promising paradigm, mobile edge networks can provide services in proximity to users by deploying computing components and cache at the edge, which can effectively decrease service delay. However, the coexistence of heterogeneous services and the sharing of limited resources lead to the competition between various services for multiple resources. This paper considers two typical heterogeneous services: computing services and content delivery services, in order to properly configure resources, it is crucial to develop an effective offloading and caching strategies. Considering the high energy consumption of 5G base stations, this paper considers the hybrid energy supply model of traditional power grid and green energy. Therefore, it is necessary to design a reasonable association mechanism which can allocate more service load to base stations rich in green energy to improve the utilization of green energy. This paper formed the joint optimization problem of computing offloading, caching and resource allocation for heterogeneous services with the objective of minimizing the on-grid power consumption under the constraints of limited resources and QoS guarantee. Since the joint optimization problem is a mixed integer nonlinear programming problem that is impossible to solve, this paper uses deep reinforcement learning method to learn the optimal strategy through a lot of training. Extensive simulation experiments show that compared with other schemes, the proposed scheme can allocate resources to heterogeneous service according to the green energy distribution which can effectively reduce the traditional energy consumption.

A Design of u-Learning's Teaching and Learning Model in the Cloud Computing Environment (클라우드 컴퓨팅 환경에서의 u-러닝 교수학습 모형 설계)

  • Jeong, Hwa-Young;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.781-786
    • /
    • 2009
  • The cloud computing environment is a new trend of web based application parts. It can be IT business model that is able to easily support learning service and allocate resources through the internet to users. U-learning also is a maximal model with efficiency of the internet based learning. Thus, in this research, we proposed a design of u-learning's teaching and learning model that is applying the internet based learning. Proposal method is to fit u-learning and has 7 steps: Preparing, planning, gathering, learning process, analysis and evaluation, and feedback. We make a cloud u-learning server and cloud LMS to process and manage the service. And We also make a mobile devices meta data to aware the model.

  • PDF

Effective E-Learning Practices by Machine Learning and Artificial Intelligence

  • Arshi Naim;Sahar Mohammed Alshawaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.209-214
    • /
    • 2024
  • This is an extended research paper focusing on the applications of Machine Learing and Artificial Intelligence in virtual learning environment. The world is moving at a fast pace having the application of Machine Learning (ML) and Artificial Intelligence (AI) in all the major disciplines and the educational sector is also not untouched by its impact especially in an online learning environment. This paper attempts to elaborate on the benefits of ML and AI in E-Learning (EL) in general and explain how King Khalid University (KKU) EL Deanship is making the best of ML and AI in its practices. Also, researchers have focused on the future of ML and AI in any academic program. This research is descriptive in nature; results are based on qualitative analysis done through tools and techniques of EL applied in KKU as an example but the same modus operandi can be implemented by any institution in its EL platform. KKU is using Learning Management Services (LMS) for providing online learning practices and Blackboard (BB) for sharing online learning resources, therefore these tools are considered by the researchers for explaining the results of ML and AI.

A Study on the Metadata Element's Expansion of DLS Based on Learning Object (학습객체 개념을 이용한 학교도서관 정보시스템(DLS)의 메타데이터 요소확장에 관한 연구)

  • Lee Byeong-Ki
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.38 no.4
    • /
    • pp.85-104
    • /
    • 2004
  • This study is supposed to the way to add and enlarge the elements related to educational domain in metadata of school library information system (DLS) by using the concept of learning object which the education information service agencies have adapted. This study is to propose the methods which can be accessed according to the units of learning content in order that they can be applied to the teaching and learning situations, and describe and index the total traits of interior data elements included in the information resources. Thus, the metadata of the existing DLS through the additional elements : , , and was made to access the information resources according to the teaching and learning situations and to accept the concept of interior learning units by means of the element.

Analyzing Learners Behavior and Resources Effectiveness in a Distance Learning Course: A Case Study of the Hellenic Open University

  • Alachiotis, Nikolaos S.;Stavropoulos, Elias C.;Verykios, Vassilios S.
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.3
    • /
    • pp.6-20
    • /
    • 2019
  • Learning analytics, or educational data mining, is an emerging field that applies data mining methods and tools for the exploitation of data coming from educational environments. Learning management systems, like Moodle, offer large amounts of data concerning students' activity, performance, behavior, and interaction with their peers and their tutors. The analysis of these data can be elaborated to make decisions that will assist stakeholders (students, faculty, and administration) to elevate the learning process in higher education. In this work, the power of Excel is exploited to analyze data in Moodle, utilizing an e-learning course developed for enhancing the information computer technology skills of school teachers in primary and secondary education in Greece. Moodle log files are appropriately manipulated in order to trace daily and weekly activity of the learners concerning distribution of access to resources, forum participation, and quizzes and assignments submission. Learners' activity was visualized for every hour of the day and for every day of the week. The visualization of access to every activity or resource during the course is also obtained. In this fashion teachers can schedule online synchronous lectures or discussions more effectively in order to maximize the learners' participation. Results depict the interest of learners for each structural component, their dedication to the course, their participation in the fora, and how it affects the submission of quizzes and assignments. Instructional designers may take advice and redesign the course according to the popularity of the educational material and learners' dedication. Moreover, the final grade of the learners is predicted according to their previous grades using multiple linear regression and sensitivity analysis. These outcomes can be suitably exploited in order for instructors to improve the design of their courses, faculty to alter their educational methodology, and administration to make decisions that will improve the educational services provided.

Prediction of Rheological Properties of Asphalt Binders Through Transfer Learning of EfficientNet (EfficientNet의 전이학습을 통한 아스팔트 바인더의 레올로지적 특성 예측)

  • Ji, Bongjun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.348-355
    • /
    • 2021
  • Asphalt, widely used for road pavement, has different required physical properties depending on the environment to which the road is exposed. Therefore, it is essential to maximize the life of asphalt roads by evaluating the physical properties of asphalt according to additives and selecting an appropriate formulation considering road traffic and climatic environment. Dynamic shear rheometer(DSR) test is mainly used to measure resistance to rutting among various physical properties of asphalt. However, the DSR test has limitations in that the results are different depending on the experimental setting and can only be measured within a specific temperature range. Therefore, in this study, to overcome the limitations of the DSR test, the rheological characteristics were predicted by learning the images collected from atomic force microscopy. Images and rheology properties were trained through EfficientNet, one of the deep learning architectures, and transfer learning was used to overcome the limitation of the deep learning model, which require many data. The trained model predicted the rheological properties of the asphalt binder with high accuracy even though different types of additives were used. In particular, it was possible to train faster than when transfer learning was not used.