Ye-Young Kim;Su-Hyun Jeong;So-Hyun Park;Young-Ho Park
KIPS Transactions on Software and Data Engineering
/
v.12
no.4
/
pp.189-198
/
2023
As crimes frequently occur on the street, the spread of CCTV is increasing. However, due to the shortcomings of passively operated CCTV, the need for intelligent CCTV is attracting attention. Due to the heavy system of such intelligent CCTV, high-performance devices are required, which has a problem in that it is expensive to replace the general CCTV. To solve this problem, an intelligent CCTV system that recognizes low-quality images and operates even on devices with low performance is required. Therefore, this paper proposes a Saying CCTV system that can detect threats in real time by using the AWS cloud platform to lighten the system and convert images into text. Based on the data extracted using YOLO v4 and OpenPose, it is implemented to determine the risk object, threat behavior, and threat situation, and calculate the risk using machine learning. Through this, the system can be operated anytime and anywhere as long as the network is connected, and the system can be used even with devices with minimal performance for video shooting and image upload. Furthermore, it is possible to quickly prevent crime by automating meaningful statistics on crime by analyzing the video and using the data stored as text.
Carbon neutrality is the concept of reducing greenhouse gases emitted by human activities and making actual emissions zero through removal of remaining gases. It is also called "Net-Zero" and "carbon zero". Korea has declared a "2050 Carbon Neutrality policy" to cope with the climate change crisis. Various carbon reduction legislative processes are underway. Since carbon neutrality requires changes in industrial technology, it is important to prepare a system for carbon zero. This paper aims to understand the status and trends of global carbon neutrality technology. Therefore, ROK's web platform "www.naver.com." was selected as the data collection scope. Korean online articles related to carbon neutrality were collected. Carbon neutrality technology trends were analyzed by future signal methodology and Word2Vec algorithm which is a neural network deep learning technology. As a result, technology advancement in the steel and petrochemical sectors, which are carbon over-release industries, was required. Investment feasibility in the electric vehicle sector and technology advancement were on the rise. It seems that the government's support for carbon neutrality and the creation of global technology infrastructure should be supported. In addition, it is urgent to cultivate human resources, and possible to confirm the need to prepare support policies for carbon neutrality.
The COVID-19 pandemic has accelerated digital transformation across all industries and daily life. Edutech is spreading in the education field, also bringing changes in university education. Non-face-to-face online-only classes at universities have spread after the COVID-19 pandemic physical distancing started. Online-only or real-time online classes showed diverse educational imitations. 'Metaverse' started to attract attention as a learning space and community activity support platform that may solve the limitations of online education and communication. It is time to prepare an introduction strategy for the actual application of education using metaverse. This study, first, by examining previous studies and cases of metaverse application, and second, establishing a metaverse introduction framework based on the technology lifecycle model and the innovation diffusion theory. Finally, we provide an introduction strategy in steps, a specialized introduction plan according to the main users is established and presented as a scenario. We expect that this study will provide the theoretical background of the new technology introduction and the spread of metaverse research. Also, we present an efficient introduction strategy, the basis for a service model, and a practical basis for the university's value-added strategy.
This study aims to investigate the online class preference depending on students' gender and school level. To achieve this aim, the study conducted a survey on 4,803 elementary, middle, and high school students in 17 regions nationwide. The valid data of 4,524 were then analyzed using the Apriori algorithm to discern the associated patterns of the online class preference corresponding to their gender and school level. As a result, a total of 16 rules, including 7 from elementary school students, 4 from middle school students, and 5 from high school students were derived. To be specific, elementary school male students preferred software-based classes whereas elementary female students preferred maker-based classes. In the case of middle school, both male and female students preferred virtual experience-based classes. On the other hand, high school students had a higher preference for subject-specific lecture-based classes. The study findings can serve as empirical evidence for explaining the needs of online classes perceived by K-12 students. In addition, this study can be used as basic research to present and suggest areas of improvement for diversifying online classes. Future studies can further conduct in-depth analysis on the development of various online class activities and models, the design of online class platforms, and the female students' career motivation in the field of science and technology.
Recently, energy consumption for heating costs, which is 35% of smart farm energy costs, has increased, requiring energy consumption efficiency, and the importance of new and renewable energy is increasing due to concerns about the realization of electricity bills. Renewable energy belongs to hydropower, wind, and solar power, of which solar energy is a power generation technology that converts it into electrical energy, and this technology has less impact on the environment and is simple to maintain. In this study, based on the greenhouse heat storage tank and heat pump data, the factors that affect the heat storage tank are selected and a heat storage tank supply temperature prediction model is developed. It is predicted using Long Short-Term Memory (LSTM), which is effective for time series data analysis and prediction, and XGBoost model, which is superior to other ensemble learning techniques. By predicting the temperature of the heat pump heat storage tank, energy consumption may be optimized and system operation may be optimized. In addition, we intend to link it to the smart farm energy integrated operation system, such as reducing heating and cooling costs and improving the energy independence of farmers due to the use of solar power. By managing the supply of waste heat energy through the platform and deriving the maximum heating load and energy values required for crop growth by season and time, an optimal energy management plan is derived based on this.
The Transactions of the Korea Information Processing Society
/
v.13
no.9
/
pp.395-403
/
2024
Recently, with the advancement of technology, the automotive industry has seen an increase in network connectivity. CAN (Controller Area Network) bus technology enables fast and efficient data communication between various electronic devices and systems within a vehicle, providing a platform that integrates and manages a wide range of functions, from core systems to auxiliary features. However, this increased connectivity raises concerns about network security, as external attackers could potentially gain access to the automotive network, taking control of the vehicle or stealing personal information. This paper analyzed abnormal messages occurring in CAN and confirmed that message occurrence periodicity, frequency, and data changes are important factors in the detection of abnormal messages. Through DBC decoding, the specific meanings of CAN messages were interpreted. Based on this, a model for classifying abnormalities was proposed using the GRU model to analyze the periodicity and trend of message occurrences by measuring the difference (residual) between the predicted and actual messages occurring within a certain period as an abnormality metric. Additionally, for multi-class classification of attack techniques on abnormal messages, a Random Forest model was introduced as a multi-classifier using message occurrence frequency, periodicity, and residuals, achieving improved performance. This model achieved a high accuracy of over 99% in detecting abnormal messages and demonstrated superior performance compared to other existing models.
Multi-modal generation is the process of generating results based on a variety of information, such as text, images, and audio. With the rapid development of AI technology, there is a growing number of multi-modal based systems that synthesize different types of data to produce results. In this paper, we present an AI system that uses speech and text recognition to describe a person and generate a montage image. While the existing montage generation technology is based on the appearance of Westerners, the montage generation system developed in this paper learns a model based on Korean facial features. Therefore, it is possible to create more accurate and effective Korean montage images based on multi-modal voice and text specific to Korean. Since the developed montage generation app can be utilized as a draft montage, it can dramatically reduce the manual labor of existing montage production personnel. For this purpose, we utilized persona-based virtual person montage data provided by the AI-Hub of the National Information Society Agency. AI-Hub is an AI integration platform aimed at providing a one-stop service by building artificial intelligence learning data necessary for the development of AI technology and services. The image generation system was implemented using VQGAN, a deep learning model used to generate high-resolution images, and the KoDALLE model, a Korean-based image generation model. It can be confirmed that the learned AI model creates a montage image of a face that is very similar to what was described using voice and text. To verify the practicality of the developed montage generation app, 10 testers used it and more than 70% responded that they were satisfied. The montage generator can be used in various fields, such as criminal detection, to describe and image facial features.
As a contemporary exponent of Bauderillard's Simulation and Simulacra, this paper aims to reflect on the 'consumer culture' criticized by Baudrillard from the lens of Christian Education in reading the Drama, Penthouse related to the notions of the consumption-ideology, the desire and violence of image in the post-Covid 19 era. As Baudrillard begins to realize that the concept of simulation rooted from mass media in the modern society, he explains mass media as the emerging of Simulation or the process of Simulation will lead to the impulsion of reality, which ends up with vanishing the original reality. Baudrillard is explaining in his argument that the process of Simulation proceeds among various areas of the contemporary society being manipulated by mass media. While Simulation is the process of producing the hyperreality characterized by the excess of images that seems more real than the original reality, Simulation brought about Simulacra as excess reality or consequently exploding reality. Christian educators in the post-Covid 19 must know how to deal with critical theory by considering positive ways of avoiding questioning of how to articulate what the norm of universal consensus is in the specific situation. In other words, it should be noted that the nature of the ruling ideology and the ideology of consumption has been influenced or manipulated by mass media. Christian educators especially have to help young people in seeing the messages from the images of the screens, television, soap-opera, and commercial advertising making reality as Simulacre which is more real than the original reality. When the medium becomes the message, the power of medium makes the consumer not reach communication with it. This is the main reason in the controversy about the images on television drama, Penthouse and the impact of images on people's mind. As an exponent of McLuhan's belief that "the medium is the message", Baudrillard argues although the message and a subject of Simulacra(excessive reality) is unexpectedly disappearing, the medium itself is vanished through the silence of image. However, the task of Christian education has to fuel how we teach, learn, share and pass on the Word of God as the Message. Furthermore, it is worth noting that the Message of God cannot be vanished or burst with the impulsion of it, but exists forever. With Baudrillard's ideas of Simulation and Simulacra in mind, the work of Christian education as an observation platform can better engage the reflection on a consumer society of consumerism that makes Church community and a consumer irresistible against the Fake world.
It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.
In this study, we propose a method to monitor the surface area of agricultural reservoirs in South Korea using Sentinel-1 synthetic aperture radar images and the deep learning model, Swin Transformer. Utilizing the Google Earth Engine platform, datasets from 2017 to 2021 were constructed for seven agricultural reservoirs, categorized into 700 K-ton, 900 K-ton, and 1.5 M-ton capacities. For four of the reservoirs, a total of 1,283 images were used for model training through shuffling and 5-fold cross-validation techniques. Upon evaluation, the Swin Transformer Large model, configured with a window size of 12, demonstrated superior semantic segmentation performance, showing an average accuracy of 99.54% and a mean intersection over union (mIoU) of 95.15% for all folds. When the best-performing model was applied to the datasets of the remaining three reservoirsfor validation, it achieved an accuracy of over 99% and mIoU of over 94% for all reservoirs. These results indicate that the Swin Transformer model can effectively monitor the surface area of agricultural reservoirs in South Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.