This paper presents a hybrid approach to the sentiment analysis of online texts. The sentiment of a text refers to the feelings that the author of a text has towards a certain topic. Many existing approaches employ either a pattern-based approach or a machine learning based approach. The former shows relatively high precision in classifying the sentiments, but suffers from the data sparseness problem, i.e. the lack of patterns. The latter approach shows relatively lower precision, but 100% recall. The approach presented in the current work adopts the merits of both approaches. It combines the pattern-based approach with the machine learning based approach, so that the relatively high precision and high recall can be maintained. Our experiment shows that the hybrid approach improves the F-measure score for more than 50% in comparison with the pattern-based approach and for around 1% comparing with the machine learning based approach. The numerical improvement from the machine learning based approach might not seem to be quite encouraging, but the fact that in the current approach not only the sentiment or the polarity information of sentences but also the additional information such as target of sentiments can be classified makes the current approach promising.
본 논문에서는 성격유형 분류도구 중에서 에니어그램의 성격유형 관련변수와 학습성격유형과의 관계를 신경망을 이용하여 분석하고 타당성을 보이고자 한다. 즉, 학습성격유형의 기본유형인 행동형, 규범형, 탐구형, 이상형에 대한 패턴을 패턴분석에 효과적인 모델인 퍼지 TAM 네트워크를 이용하여 분석하고자 한다.
많은 대학교에서 사이버 강의는 오늘날 중요한 교육 형태로 자리 잡아가고 있다. 수강생이 많은 교양교과목과 전공의 일부 교과목들을 사이버강의로 진행하고 있다. 그러나 실제로 사이버 강의의 수요자이면서 주체인 학습자에 대한 현황 분석 연구는 거의 이루어지지 않아서, 학습자의 특성에 맞게 사이버 강의가 제공되고 있는지에 대한 연구는 부족하다. 본 연구는 사이버 강의 과정에 이루어지는 학생들의 로그 파일을 이용하여 학습자들의 교양과목과 전공과목의 학습시간 유형을 시간대별, 요일별, 주차별로 분석하고, 효율적으로 학습효과를 높일 수 있는 방안들을 제시하였다. 학생들의 학습시간이 30분 이내인 로그인이 50%이상이며, 강의외적인 요소에 이런닝 시스템 자원을 낭비하고 있어서 개선이 필요하다.
이런닝(e-Learning)에서의 사이버 강의는 오늘날 중요한 교육 형태로 자리 잡아가고 있다. 그러나 실제로 사이버 강의의 수요자이면서 주체인 학습자에 대한 현황 분석 연구는 거의 이루어지지 않아서, 학습자의 특성에 맞게 사이버 강의가 제공되고 있는지에 대한 연구는 부족하다. 본 연구는 사이버 강의 과정에 이루어지는 학생들의 로그 파일을 이용하여 학습자들의 로그인과 학습시간 유형을 시간대별, 요일별, 주차별로 분석하고, 효율적으로 학습효과를 높일 수 있는 방안들을 제시하였다. 학생들의 학습시간이 30분이내인 로그인이 50%이상이며, 강의외적인 요소에 이런닝 시스템 자원을 낭비하고 있어서 개선이 필요하다.
In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.
학습 본 연구의 목적은 블랜디드 러닝 환경에서 적용될 학업 성취 수준별 교수 학습 모형을 제안하는 것이다. 블랜디드 러닝 환경에 포함된 변인과 구조를 살펴보기 위해 웹 학습요소와 자기조절학습을 기초로 하여 두 종류의 설문지를 개발하였고, 또한 이를 적용한 반응을 근거로 하여 각 요소 간 위상과 경로를 표현하였다. 본 연구에서는 고등학생 154명을 실험 대상으로 2주간 사이버 학습을 실시하고 각 학습자의 성취 수준과 설문지 자료를 획득하였다. 또한 상관분석, 전통적 다차원척도법 그리고 중회귀분석을 적용하여 통계적 처리를 통해 각 요소 간 위상과 경로를 규명하고 블랜디드 러닝 모형을 정형화하였다.
Chemometrics의 한 분야인 패턴인지(pattern recognition)법을 한국산 고대 유리시료 94종의 중성자방사화분석으로부터 얻은 다변수데이타에 적용하였다. unsupervised learning의 방법인 주성분분석과 비선형도시법으로 시료를 분류한 결과 유리시료는 6개의 군을 형성하였다. 6개의 참조시료셋트와 시험시료셋트에 supervised learning의 SIMCA법을 적용시켰다. 그 결과 참조시료셋트는 주성분분석법 및 비선형도시법의 결과와 일치하였고 시험시료셋트에서 33개의 시료 중 17개 시료에 대해 시료가 속한 군을 판정할 수 있었다.
In the era of globalization and unlimited competition, Korean universities need a breakthrough in their education system according to the changing education landscape, such as lower graduation requirements to cultivate more multi-talented convergence leaders. While each student has different learning capabilities, which results in different performance and achievements in the same class, the uniform education that most universities are currently offering fails to accommodate such differences. Blended learning, synergically combining offline and online classes, enlarges learning space and enriches learning experiences through diversified tools and materials, including multimedia. Recently, universities are increasingly adopting video contents and on-offline convergence learning strategy. Thus, this study suggests a teaching method based on blended learning to more effectively teach existing pattern CAD and virtual CAD in the Apparel Pattern CAD class. To this end, this researcher developed a teaching-learning method and curriculum according to the blended learning phase and video-based contents. The curriculum consisted of 2D CAD (SuperAlpha: Plus) and 3D CAD (CLO) software learning for 15 weeks. Then, it was loaded to the Learning Management System (LMS) and operated for 15 weeks both online and offline. The performance analysis of LMS usage found that class materials, among online postings, were viewed the most. The discussion menu most accurately depicted students' participation, and students who did not participate in discussions were estimated to check postings less than participating students. A survey on the blended learning found that students prefer digital or more digitized classes, while preferring face to face for Q&As.
Purpose The purpose of this study is to explore the optimal trading frequency which is useful for stock price prediction by using deep learning for charting image data. We also want to identify the appropriate time for accurate forecasting of stock price when performing pattern analysis. Design/methodology/approach In order to find the optimal trading frequency patterns and forecast timings, this study is performed as follows. First, stock price data is collected using OpenAPI provided by Daishin Securities, and candle chart images are created by data frequency and forecasting time. Second, the patterns are generated by the charting images and the learning is performed using the CNN. Finally, we find the optimal trading frequency patterns and forecasting timings. Findings According to the experiment results, this study confirmed that when the 10 minute frequency data is judged to be a decline pattern at previous 1 tick, the accuracy of predicting the market frequency pattern at which the market decreasing is 76%, which is determined by the optimal frequency pattern. In addition, we confirmed that forecasting of the sales frequency pattern at previous 1 tick shows higher accuracy than previous 2 tick and 3 tick.
자동차 보급과 교통 시설 발달로 인한 문제에 대응하여, ADAS와 같은 운전 보조 기술이 주목받고 있다. 최근에는 스마트폰 내장 센서를 사용한 운전패턴 분석 방법론이 개발되었다. 이 연구에서는 레이블 없이 대조학습을 통해 운전패턴의 특징을 학습하고 변화점을 감지하는 새로운 방법을 제안한다. 이 방법은 운전패턴 분류에도 확장 가능하여, 매우 적은 레이블링 데이터만으로 높은 분류 성능을 달성할 수 있음은 물론 적용 차량이 달라지는 도메인 변화 문제에 민감하게 반응하지 않아 일반화된 성능을 달성할 수 있다는 장점을 가지고 있다. 또한 본 연구에서는 추후 스마트폰 적용성을 고려하여 6가지 대표적인 경량화 딥러닝 모델에 대해 제안하는 방법을 적용하고 비교분석하여 추후 스마트폰 기반의 시스템 개발에 활용할 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.