• Title/Summary/Keyword: Learning characteristic

Search Result 587, Processing Time 0.025 seconds

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.73-80
    • /
    • 2024
  • In this paper, we proposes a method to improve the accuracy of predicting the Korea Composite Stock Price Index (KOSPI) by combining topic modeling and Long Short-Term Memory (LSTM) neural networks. In this paper, we use the Latent Dirichlet Allocation (LDA) technique to extract ten major topics related to interest rate increases and decreases from financial news data. The extracted topics, along with historical KOSPI index data, are input into an LSTM model to predict the KOSPI index. The proposed model has the characteristic of predicting the KOSPI index by combining the time series prediction method by inputting the historical KOSPI index into the LSTM model and the topic modeling method by inputting news data. To verify the performance of the proposed model, this paper designs four models (LSTM_K model, LSTM_KNS model, LDA_K model, LDA_KNS model) based on the types of input data for the LSTM and presents the predictive performance of each model. The comparison of prediction performance results shows that the LSTM model (LDA_K model), which uses financial news topic data and historical KOSPI index data as inputs, recorded the lowest RMSE (Root Mean Square Error), demonstrating the best predictive performance.

Research on Object Detection Library Utilizing Spatial Mapping Function Between Stream Data In 3D Data-Based Area (3D 데이터 기반 영역의 stream data간 공간 mapping 기능 활용 객체 검출 라이브러리에 대한 연구)

  • Gyeong-Hyu Seok;So-Haeng Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.551-562
    • /
    • 2024
  • This study relates to a method and device for extracting and tracking moving objects. In particular, objects are extracted using different images between adjacent images, and the location information of the extracted object is continuously transmitted to provide accurate location information of at least one moving object. It relates to a method and device for extracting and tracking moving objects based on tracking moving objects. People tracking, which started as an expression of the interaction between people and computers, is used in many application fields such as robot learning, object counting, and surveillance systems. In particular, in the field of security systems, cameras are used to recognize and track people to automatically detect illegal activities. The importance of developing a surveillance system, that can detect, is increasing day by day.

Predictive modeling algorithms for liver metastasis in colorectal cancer: A systematic review of the current literature

  • Isaac Seow-En;Ye Xin Koh;Yun Zhao;Boon Hwee Ang;Ivan En-Howe Tan;Aik Yong Chok;Emile John Kwong Wei Tan;Marianne Kit Har Au
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.28 no.1
    • /
    • pp.14-24
    • /
    • 2024
  • This study aims to assess the quality and performance of predictive models for colorectal cancer liver metastasis (CRCLM). A systematic review was performed to identify relevant studies from various databases. Studies that described or validated predictive models for CRCLM were included. The methodological quality of the predictive models was assessed. Model performance was evaluated by the reported area under the receiver operating characteristic curve (AUC). Of the 117 articles screened, seven studies comprising 14 predictive models were included. The distribution of included predictive models was as follows: radiomics (n = 3), logistic regression (n = 3), Cox regression (n = 2), nomogram (n = 3), support vector machine (SVM, n = 2), random forest (n = 2), and convolutional neural network (CNN, n = 2). Age, sex, carcinoembryonic antigen, and tumor staging (T and N stage) were the most frequently used clinicopathological predictors for CRCLM. The mean AUCs ranged from 0.697 to 0.870, with 86% of the models demonstrating clear discriminative ability (AUC > 0.70). A hybrid approach combining clinical and radiomic features with SVM provided the best performance, achieving an AUC of 0.870. The overall risk of bias was identified as high in 71% of the included studies. This review highlights the potential of predictive modeling to accurately predict the occurrence of CRCLM. Integrating clinicopathological and radiomic features with machine learning algorithms demonstrates superior predictive capabilities.

Driver Group Clustering Technique and Risk Estimation Method for Traffic Accident Prevention

  • Tae-Wook Kim;Ji-Woong Yang;Hyeon-Jin Jung;Han-Jin Lee;Ellen J. Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.53-58
    • /
    • 2024
  • Traffic accidents are not only a threat to human lives but also pose significant societal costs. Recently, research has been conducted to address the issue of traffic accidents by predicting the risk using deep learning technology and spatiotemporal information of roads. However, while traffic accidents are influenced not only by the spatiotemporal information of roads but also by human factors, research on the latter has been relatively less active. This paper analyzes driver groups and characteristics by applying clustering techniques to a traffic accident dataset and proposes and applies a method to calculate the Risk Level for each driver group and characteristic. In this process, the preprocessing technique suggested in this paper demonstrates a higher Silhouette Score of 0.255 compared to the commonly used One-Hot Embedding & Min-Max Scaling techniques, indicating its suitability as a preprocessing method.

Discrimination of dicentric chromosome from radiation exposure patient data using a pretrained deep learning model

  • Soon Woo Kwon;Won Il Jang;Mi-Sook Kim;Ki Moon Seong;Yang Hee Lee;Hyo Jin Yoon;Susan Yang;Younghyun Lee;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3123-3128
    • /
    • 2024
  • The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997.

Exploring the Factors Influencing on the Accuracy of Self-Reported Responses in Affective Assessment of Science (과학과 자기보고식 정의적 영역 평가의 정확성에 영향을 주는 요소 탐색)

  • Chung, Sue-Im;Shin, Donghee
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.3
    • /
    • pp.363-377
    • /
    • 2019
  • This study reveals the aspects of subjectivity in the test results in a science-specific aspect when assessing science-related affective characteristic through self-report items. The science-specific response was defined as the response that appear due to student's recognition of nature or characteristics of science when his or her concepts or perceptions about science were attempted to measure. We have searched for cases where science-specific responses especially interfere with the measurement objective or accurate self-reports. The results of the error due to the science-specific factors were derived from the quantitative data of 649 students in the 1st and 2nd grade of high school and the qualitative data of 44 students interviewed. The perspective of science and the characteristics of science that students internalize from everyday life and science learning experiences interact with the items that form the test tool. As a result, it was found that there were obstacles to accurate self-report in three aspects: characteristics of science, personal science experience, and science in tool. In terms of the characteristic of science in relation to the essential aspect of science, students respond to items regardless of the measuring constructs, because of their views and perceived characteristics of science based on subjective recognition. The personal science experience factor representing the learner side consists of student's science motivation, interaction with science experience, and perception of science and life. Finally, from the instrumental point of view, science in tool leads to terminological confusion due to the uncertainty of science concepts and results in a distance from accurate self-report eventually. Implications from the results of the study are as follows: review of inclusion of science-specific factors, precaution to clarify the concept of measurement, check of science specificity factors at the development stage, and efforts to cross the boundaries between everyday science and school science.

Effects of Seeding Date on Growth, Yield, and Fatty Acid Content of Perilla Inter-cropped with Sesame in Central Korea (중부지역 참깨 간작 들깨 재배시 파종기가 수량 및 품질에 미치는 영향)

  • Kim, Young Sang;Kim, Ki Hyeon;Yun, Cheol Gu;Heo, Yun Seon;Kim, Ik Jei;Kim, Young-Ho;Song, Yong-Sup;Lee, Myoung Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.138-145
    • /
    • 2021
  • Perilla contains more than 60% of fatty acids. Linolenic acid is effective in preventing heart disease, improving learning ability, treating allergies, and preventing cancer. This study was carried out to improve the cultivation method to aid the stable production of perilla by developing a suitable inter-cropping system with sesame in the central region as well as to report a suitable planting time. The test results are summarized as follows. As the planting time of perilla in the inter-cropping system with sesame was delayed, the number of clusters and capsules decreased. The perilla yields in this system showed significant differences compared to that with the previous crops (sesame varieties) and planting period. The yield of perilla was significantly lower in the characteristic-Type B variety than in the characteristic-Type A variety and decreased significantly as the planting time was delayed. With regards to the quality characteristics of perilla, such as crude protein, crude fat, etc., there were no differences between previous perilla crops and those inter-cropped with sesame. The perilla composition did not show any difference during the planting period; however, with delay in the planting time, crude protein content increased but crude fat content decreased. Yield of perilla was 38% higher in a two-row (40 x 40 cm) system, compared to a single-row cultivation (110 x 20 cm) of perilla inter-cropped with sesame. These results suggest that the suitable method for inter-cropping perilla with sesame in the central region is to sow the characteristic-Type A variety in early May, and cultivate the perilla in two lines (40 x 40 cm) in mid-June. This was judged to be the best cultivation method in the central region.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Subimage Detection of Window Image Using AdaBoost (AdaBoost를 이용한 윈도우 영상의 하위 영상 검출)

  • Gil, Jong In;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.578-589
    • /
    • 2014
  • Window image is displayed through a monitor screen when we execute the application programs on the computer. This includes webpage, video player and a number of applications. The webpage delivers a variety of information by various types in comparison with other application. Unlike a natural image captured from a camera, the window image like a webpage includes diverse components such as text, logo, icon, subimage and so on. Each component delivers various types of information to users. However, the components with different characteristic need to be divided locally, because text and image are served by various type. In this paper, we divide window images into many sub blocks, and classify each divided region into background, text and subimage. The detected subimages can be applied into 2D-to-3D conversion, image retrieval, image browsing and so forth. There are many subimage classification methods. In this paper, we utilize AdaBoost for verifying that the machine learning-based algorithm can be efficient for subimage detection. In the experiment, we showed that the subimage detection ratio is 93.4 % and false alarm is 13 %.