International Journal of Computer Science & Network Security
/
v.23
no.10
/
pp.135-146
/
2023
An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.
Journal of the Korea Society of Computer and Information
/
v.29
no.7
/
pp.73-80
/
2024
In this paper, we proposes a method to improve the accuracy of predicting the Korea Composite Stock Price Index (KOSPI) by combining topic modeling and Long Short-Term Memory (LSTM) neural networks. In this paper, we use the Latent Dirichlet Allocation (LDA) technique to extract ten major topics related to interest rate increases and decreases from financial news data. The extracted topics, along with historical KOSPI index data, are input into an LSTM model to predict the KOSPI index. The proposed model has the characteristic of predicting the KOSPI index by combining the time series prediction method by inputting the historical KOSPI index into the LSTM model and the topic modeling method by inputting news data. To verify the performance of the proposed model, this paper designs four models (LSTM_K model, LSTM_KNS model, LDA_K model, LDA_KNS model) based on the types of input data for the LSTM and presents the predictive performance of each model. The comparison of prediction performance results shows that the LSTM model (LDA_K model), which uses financial news topic data and historical KOSPI index data as inputs, recorded the lowest RMSE (Root Mean Square Error), demonstrating the best predictive performance.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.3
/
pp.551-562
/
2024
This study relates to a method and device for extracting and tracking moving objects. In particular, objects are extracted using different images between adjacent images, and the location information of the extracted object is continuously transmitted to provide accurate location information of at least one moving object. It relates to a method and device for extracting and tracking moving objects based on tracking moving objects. People tracking, which started as an expression of the interaction between people and computers, is used in many application fields such as robot learning, object counting, and surveillance systems. In particular, in the field of security systems, cameras are used to recognize and track people to automatically detect illegal activities. The importance of developing a surveillance system, that can detect, is increasing day by day.
Isaac Seow-En;Ye Xin Koh;Yun Zhao;Boon Hwee Ang;Ivan En-Howe Tan;Aik Yong Chok;Emile John Kwong Wei Tan;Marianne Kit Har Au
Annals of Hepato-Biliary-Pancreatic Surgery
/
v.28
no.1
/
pp.14-24
/
2024
This study aims to assess the quality and performance of predictive models for colorectal cancer liver metastasis (CRCLM). A systematic review was performed to identify relevant studies from various databases. Studies that described or validated predictive models for CRCLM were included. The methodological quality of the predictive models was assessed. Model performance was evaluated by the reported area under the receiver operating characteristic curve (AUC). Of the 117 articles screened, seven studies comprising 14 predictive models were included. The distribution of included predictive models was as follows: radiomics (n = 3), logistic regression (n = 3), Cox regression (n = 2), nomogram (n = 3), support vector machine (SVM, n = 2), random forest (n = 2), and convolutional neural network (CNN, n = 2). Age, sex, carcinoembryonic antigen, and tumor staging (T and N stage) were the most frequently used clinicopathological predictors for CRCLM. The mean AUCs ranged from 0.697 to 0.870, with 86% of the models demonstrating clear discriminative ability (AUC > 0.70). A hybrid approach combining clinical and radiomic features with SVM provided the best performance, achieving an AUC of 0.870. The overall risk of bias was identified as high in 71% of the included studies. This review highlights the potential of predictive modeling to accurately predict the occurrence of CRCLM. Integrating clinicopathological and radiomic features with machine learning algorithms demonstrates superior predictive capabilities.
Tae-Wook Kim;Ji-Woong Yang;Hyeon-Jin Jung;Han-Jin Lee;Ellen J. Hong
Journal of the Korea Society of Computer and Information
/
v.29
no.8
/
pp.53-58
/
2024
Traffic accidents are not only a threat to human lives but also pose significant societal costs. Recently, research has been conducted to address the issue of traffic accidents by predicting the risk using deep learning technology and spatiotemporal information of roads. However, while traffic accidents are influenced not only by the spatiotemporal information of roads but also by human factors, research on the latter has been relatively less active. This paper analyzes driver groups and characteristics by applying clustering techniques to a traffic accident dataset and proposes and applies a method to calculate the Risk Level for each driver group and characteristic. In this process, the preprocessing technique suggested in this paper demonstrates a higher Silhouette Score of 0.255 compared to the commonly used One-Hot Embedding & Min-Max Scaling techniques, indicating its suitability as a preprocessing method.
Soon Woo Kwon;Won Il Jang;Mi-Sook Kim;Ki Moon Seong;Yang Hee Lee;Hyo Jin Yoon;Susan Yang;Younghyun Lee;Hyung Jin Shim
Nuclear Engineering and Technology
/
v.56
no.8
/
pp.3123-3128
/
2024
The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997.
Journal of The Korean Association For Science Education
/
v.39
no.3
/
pp.363-377
/
2019
This study reveals the aspects of subjectivity in the test results in a science-specific aspect when assessing science-related affective characteristic through self-report items. The science-specific response was defined as the response that appear due to student's recognition of nature or characteristics of science when his or her concepts or perceptions about science were attempted to measure. We have searched for cases where science-specific responses especially interfere with the measurement objective or accurate self-reports. The results of the error due to the science-specific factors were derived from the quantitative data of 649 students in the 1st and 2nd grade of high school and the qualitative data of 44 students interviewed. The perspective of science and the characteristics of science that students internalize from everyday life and science learning experiences interact with the items that form the test tool. As a result, it was found that there were obstacles to accurate self-report in three aspects: characteristics of science, personal science experience, and science in tool. In terms of the characteristic of science in relation to the essential aspect of science, students respond to items regardless of the measuring constructs, because of their views and perceived characteristics of science based on subjective recognition. The personal science experience factor representing the learner side consists of student's science motivation, interaction with science experience, and perception of science and life. Finally, from the instrumental point of view, science in tool leads to terminological confusion due to the uncertainty of science concepts and results in a distance from accurate self-report eventually. Implications from the results of the study are as follows: review of inclusion of science-specific factors, precaution to clarify the concept of measurement, check of science specificity factors at the development stage, and efforts to cross the boundaries between everyday science and school science.
Kim, Young Sang;Kim, Ki Hyeon;Yun, Cheol Gu;Heo, Yun Seon;Kim, Ik Jei;Kim, Young-Ho;Song, Yong-Sup;Lee, Myoung Hee
KOREAN JOURNAL OF CROP SCIENCE
/
v.66
no.2
/
pp.138-145
/
2021
Perilla contains more than 60% of fatty acids. Linolenic acid is effective in preventing heart disease, improving learning ability, treating allergies, and preventing cancer. This study was carried out to improve the cultivation method to aid the stable production of perilla by developing a suitable inter-cropping system with sesame in the central region as well as to report a suitable planting time. The test results are summarized as follows. As the planting time of perilla in the inter-cropping system with sesame was delayed, the number of clusters and capsules decreased. The perilla yields in this system showed significant differences compared to that with the previous crops (sesame varieties) and planting period. The yield of perilla was significantly lower in the characteristic-Type B variety than in the characteristic-Type A variety and decreased significantly as the planting time was delayed. With regards to the quality characteristics of perilla, such as crude protein, crude fat, etc., there were no differences between previous perilla crops and those inter-cropped with sesame. The perilla composition did not show any difference during the planting period; however, with delay in the planting time, crude protein content increased but crude fat content decreased. Yield of perilla was 38% higher in a two-row (40 x 40 cm) system, compared to a single-row cultivation (110 x 20 cm) of perilla inter-cropped with sesame. These results suggest that the suitable method for inter-cropping perilla with sesame in the central region is to sow the characteristic-Type A variety in early May, and cultivate the perilla in two lines (40 x 40 cm) in mid-June. This was judged to be the best cultivation method in the central region.
Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
Korean Journal of Remote Sensing
/
v.40
no.4
/
pp.387-396
/
2024
Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.
Window image is displayed through a monitor screen when we execute the application programs on the computer. This includes webpage, video player and a number of applications. The webpage delivers a variety of information by various types in comparison with other application. Unlike a natural image captured from a camera, the window image like a webpage includes diverse components such as text, logo, icon, subimage and so on. Each component delivers various types of information to users. However, the components with different characteristic need to be divided locally, because text and image are served by various type. In this paper, we divide window images into many sub blocks, and classify each divided region into background, text and subimage. The detected subimages can be applied into 2D-to-3D conversion, image retrieval, image browsing and so forth. There are many subimage classification methods. In this paper, we utilize AdaBoost for verifying that the machine learning-based algorithm can be efficient for subimage detection. In the experiment, we showed that the subimage detection ratio is 93.4 % and false alarm is 13 %.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.