• Title/Summary/Keyword: Learning behavior

Search Result 1,458, Processing Time 0.023 seconds

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars

  • Alzabeebee, Saif;Dhahir, Moahmmed K.;Keawsawasvong, Suraparb
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.143-154
    • /
    • 2022
  • Corrosion of steel reinforcement is considered as the main cause of concrete structures deterioration, especially those under humid environmental conditions. Hence, fiber reinforced polymer (FRP) bars are being increasingly used as a replacement for conventional steel owing to their non-corrodible characteristics. However, predicting the shear strength of beams reinforced with FRP bars still challenging due to the lack of robust shear theory. Thus, this paper aims to develop an explicit data driven based model to predict the shear strength of FRP reinforced beams using multi-objective evolutionary polynomial regression analysis (MOGA-EPR) as data driven models learn the behavior from the input data without the need to employee a theory that aid the derivation, and thus they have an enhanced accuracy. This study also evaluates the accuracy of predictive models of shear strength of FRP reinforced concrete beams employed by different design codes by calculating and comparing the values of the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2), and percentage of prediction within error range of ±20% (a20-index). Experimental database has been developed and employed in the model learning, validation, and accuracy examination. The statistical analysis illustrated the robustness of the developed model with MAE, RMSE, 𝜇, 𝜎, R2, and a20-index of 14.6, 20.8, 1.05, 0.27, 0.85, and 0.61, respectively for training data and 10.4, 14.1, 0.98, 0.25, 0.94, and 0.60, respectively for validation data. Furthermore, the developed model achieved much better predictions than the standard predictive models as it scored lower MAE, RMSE, and 𝜎, and higher R2 and a20-index. The new model can be used in future with confidence in optimized designs as its accuracy is higher than standard predictive models.

Why do children loose their compliance with the law as they grow? (무법으로 태어나 준법을 거쳐 위법으로 성장하는 이유?)

  • Taekyun Hur
    • Korean Journal of Culture and Social Issue
    • /
    • v.11 no.spc
    • /
    • pp.117-131
    • /
    • 2005
  • The present research integrated various theoretical perspectives of human unlawful behaviors in order to clarify the psychological mechanisms that underly the changes in compliance with and attitude toward law as time goes. Most well-known theories such as classical theory of crime, biosocial and evoluationary theories, and psychological perspectives including psycho-dynamic theory, personality, intellectual/moral development theories, and decision-making were discussed in their unique points in explaining human unlawful behaviors. Finally, social-learning theory and cognitive-dissonance theory has been suggested to explain the psychological mechanism of the phenomena in which people's attitude toward law and compliance with law become weaken through violation experiences of trivial lawful regulations. Especially, the logic of cognitive-dissonance theory (that people committed violation of trivial laws should experience dissonance with their original belief of compliance with law and negative arousal and try to remove the arousal by change their belief along with their behavior) were theoretically convincing to explain the phenomenon and supported by a series of experimental studies. Several practical implications for future constitutional and political activities were discussed in the basis of the cognitive dissonance theory.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

A Method for Generating Malware Countermeasure Samples Based on Pixel Attention Mechanism

  • Xiangyu Ma;Yuntao Zhao;Yongxin Feng;Yutao Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.456-477
    • /
    • 2024
  • With information technology's rapid development, the Internet faces serious security problems. Studies have shown that malware has become a primary means of attacking the Internet. Therefore, adversarial samples have become a vital breakthrough point for studying malware. By studying adversarial samples, we can gain insights into the behavior and characteristics of malware, evaluate the performance of existing detectors in the face of deceptive samples, and help to discover vulnerabilities and improve detection methods for better performance. However, existing adversarial sample generation methods still need help regarding escape effectiveness and mobility. For instance, researchers have attempted to incorporate perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others into adversarial samples to obfuscate detectors. However, these methods are only effective in specific environments and yield limited evasion effectiveness. To solve the above problems, this paper proposes a malware adversarial sample generation method (PixGAN) based on the pixel attention mechanism, which aims to improve adversarial samples' escape effect and mobility. The method transforms malware into grey-scale images and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves the modeling ability of the generator and discriminator, thus enhancing the escape effect and mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of the quality of the adversarial samples. The experimental results show that the adversarial samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic detectors, respectively.

Analysis of Activation Energy of Thermal Aging Embrittlement in Cast Austenite Stainless Steels (주조 오스테나이트 스테인리스강의 열취화 활성화에너지 분석)

  • Gyeong-Geun Lee;Suk-Min Hong;Ji-Su Kim;Dong-Hyun Ahn;Jong-Min Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.56-65
    • /
    • 2024
  • Cast austenitic stainless steels (CASS) and austenitic stainless steel weldments with a ferrite-austenite duplex structure are widely used in nuclear power plants, incorporating ferrite phase to enhance strength, stress relief, and corrosion resistance. Thermal aging at 290-325℃ can induce embrittlement, primarily due to spinodal decomposition and G-phase precipitation in the ferrite phase. This study evaluates the effects of thermal aging by collecting and analyzing various mechanical properties, such as Charpy impact energy, ferrite microhardness, and tensile strength, from various literature sources. Different model expressions, including hyperbolic tangent and phase transformation equations, are applied to calculate activation energy (Q) of room-temperature impact energies, and the results are compared. Additionally, predictive models for Q based on material composition are evaluated, and the potential of machine learning techniques for improving prediction accuracy is explored. The study also examines the use of ferrite microhardness and tensile strength in calculating Q and assessing thermal embrittlement. The findings provide insights for developing advanced prediction models for the thermal embrittlement behavior of CASS and the weldments of austenitic steels, contributing to the safety and reliability of nuclear power plant components.

Predicting strength and strain of circular concrete cross-sections confined with FRP under axial compression by utilizing artificial neural networks

  • Yaman S. S. Al-Kamaki;Abdulhameed A. Yaseen;Mezgeen S. Ahmed;Razaq Ferhadi;Mand K. Askar
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.93-122
    • /
    • 2024
  • One well-known reason for using Fiber Reinforced Polymer (FRP) composites is to improve concrete strength and strain capacity via external confinement. Hence, various studies have been undertaken to offer a good illustration of the response of FRP-wrapped concrete for practical design intents. However, in such studies, the strength and strain of the confined concrete were predicted using regression analysis based on a limited number of test data. This study presents an approach based on artificial neural networks (ANNs) to develop models to predict the strength and strain at maximum stress enhancement of circular concrete cross-sections confined with different FRP types (Carbone, Glass, Aramid). To achieve this goal, a large test database comprising 493 axial compression experiments on FRP-confined concrete samples was compiled based on an extensive review of the published literature and used to validate the predicted artificial intelligence techniques. The ANN approach is currently thought to be the preferred learning technique because of its strong prediction effectiveness, interpretability, adaptability, and generalization. The accuracy of the developed ANN model for predicting the behavior of FRP-confined concrete is commensurate with the experimental database compiled from published literature. Statistical measures values, which indicate a better fit, were observed in all of the ANN models. Therefore, compared to existing models, it should be highlighted that the newly developed models based on FRP type are remarkably accurate.

Exploring Factors Influencing Youth Reading in the Era of Generative AI (생성형 인공지능 시대 청소년의 독서에 영향을 미치는 요인 탐색)

  • Sungjae Park;Insoo Shin
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.3
    • /
    • pp.171-203
    • /
    • 2024
  • The purpose of this study is to analyze the factors that influence youth reading habits through exploratory data analysis of various reading variables. Using data from the Korean Children and Youth Panel Survey, we divided participants into a reading group and a non-reading group and analyzed the factors influencing reading habits through a t-test that compared the mean differences between the two groups. The results are as follows: The reading group showed higher scores than the non-reading group in learning-related factors such as study time and academic engagement, positive emotional factors, career-related factors, and social activity factors such as club participation and volunteering. On the other hand, the non-reading group scored higher in key factors such as academic helplessness, emotional problems like aggression and depression, and experiences of delinquent behavior. Additionally, this study suggests further research topics such as the relationship between reading and interactions with parents, cooperation as a social emotion, and physical activity, areas that have not been deeply explored in previous studies.

Development of Emotion Recognition Model Using Audio-video Feature Extraction Multimodal Model (음성-영상 특징 추출 멀티모달 모델을 이용한 감정 인식 모델 개발)

  • Jong-Gu Kim;Jang-Woo Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.221-228
    • /
    • 2023
  • Physical and mental changes caused by emotions can affect various behaviors, such as driving or learning behavior. Therefore, recognizing these emotions is a very important task because it can be used in various industries, such as recognizing and controlling dangerous emotions while driving. In this paper, we attempted to solve the emotion recognition task by implementing a multimodal model that recognizes emotions using both audio and video data from different domains. After extracting voice from video data using RAVDESS data, features of voice data are extracted through a model using 2D-CNN. In addition, the video data features are extracted using a slowfast feature extractor. And the information contained in the audio and video data, which have different domains, are combined into one feature that contains all the information. Afterwards, emotion recognition is performed using the combined features. Lastly, we evaluate the conventional methods that how to combine results from models and how to vote two model's results and a method of unifying the domain through feature extraction, then combining the features and performing classification using a classifier.

Real-time Fall Accident Prediction using Random Forest in IoT Environment (사물인터넷 환경에서 랜덤포레스트를 이용한 실시간 낙상 사고 예측)

  • Chan-Woo Bang;Bong-Hyun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.27-33
    • /
    • 2024
  • As of 2023, the number of accident victims in the domestic construction industry is 26,829, ranking second only to other businesses (service industries). The accident types of casualties in all industries were falls (29,229 people), followed by falls (14,357 people). Based on the above data, this study attaches sensors to hard hats and insoles to predict fall accidents that frequently occur at construction sites, and proposes smart safety equipment that applies a random forest algorithm based on the data collected through this. The random forest model can determine fall accidents in real time with high accuracy by generating multiple decision trees and combining the predictions of each tree. This model classifies whether a worker has had a fall accident and the type of behavior through data collected from the MPU-6050 sensor attached to the hard hat. Fall accidents that are primarily determined from hard hats are secondarily predicted through sensors attached to the insole, thereby increasing prediction accuracy. It is expected that this will enable rapid response in the event of an accident, thereby reducing worker deaths and accidents.