• Title/Summary/Keyword: Learning about AI

Search Result 142, Processing Time 0.024 seconds

An overview of deep learning in the field of dentistry

  • Hwang, Jae-Joon;Jung, Yun-Hoa;Cho, Bong-Hae;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Purpose: Artificial intelligence (AI), represented by deep learning, can be used for real-life problems and is applied across all sectors of society including medical and dental field. The purpose of this study is to review articles about deep learning that were applied to the field of oral and maxillofacial radiology. Materials and Methods: A systematic review was performed using Pubmed, Scopus, and IEEE explore databases to identify articles using deep learning in English literature. The variables from 25 articles included network architecture, number of training data, evaluation result, pros and cons, study object and imaging modality. Results: Convolutional Neural network (CNN) was used as a main network component. The number of published paper and training datasets tended to increase, dealing with various field of dentistry. Conclusion: Dental public datasets need to be constructed and data standardization is necessary for clinical application of deep learning in dental field.

Genetic Control of Learning and Prediction: Application to Modeling of Plasma Etch Process Data (학습과 예측의 유전 제어: 플라즈마 식각공정 데이터 모델링에의 응용)

  • Uh, Hyung-Soo;Gwak, Kwan-Woong;Kim, Byung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.315-319
    • /
    • 2007
  • A technique to model plasma processes was presented. This was accomplished by combining the backpropagation neural network (BPNN) and genetic algorithm (GA). Particularly, the GA was used to optimize five training factor effects by balancing the training and test errors. The technique was evaluated with the plasma etch data, characterized by a face-centered Box Wilson experiment. The etch outputs modeled include Al etch rate, AI selectivity, DC bias, and silica profile angle. Scanning electron microscope was used to quantify the etch outputs. For comparison, the etch outputs were modeled in a conventional fashion. GABPNN models demonstrated a considerable improvement of more than 25% for all etch outputs only but he DC bias. About 40% improvements were even achieved for the profile angle and AI etch rate. The improvements demonstrate that the presented technique is effective to improving BPNN prediction performance.

Generation of global coronal field extrapolation from frontside and AI-generated farside magnetograms

  • Jeong, Hyunjin;Moon, Yong-Jae;Park, Eunsu;Lee, Harim;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2019
  • Global map of solar surface magnetic field, such as the synoptic map or daily synchronic frame, does not tell us real-time information about the far side of the Sun. A deep-learning technique based on Conditional Generative Adversarial Network (cGAN) is used to generate farside magnetograms from EUVI $304{\AA}$ of STEREO spacecrafts by training SDO spacecraft's data pairs of HMI and AIA $304{\AA}$. Farside(or backside) data of daily synchronic frames are replaced by the Ai-generated magnetograms. The new type of data is used to calculate the Potential Field Source Surface (PFSS) model. We compare the results of the global field with observations as well as those of the conventional method. We will discuss advantage and disadvantage of the new method and future works.

  • PDF

Classification System of Fashion Emotion for the Standardization of Data (데이터 표준화를 위한 패션 감성 분류 체계)

  • Park, Nanghee;Choi, Yoonmi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.949-964
    • /
    • 2021
  • Accumulation of high-quality data is crucial for AI learning. The goal of using AI in fashion service is to propose of a creative, personalized solution that is close to the know-how of a human operator. These customized solutions require an understanding of fashion products and emotions. Therefore, it is necessary to accumulate data on the attributes of fashion products and fashion emotion. The first step for accumulating fashion data is to standardize the attribute with coherent system. The purpose of this study is to propose a fashion emotional classification system. For this, images of fashion products were collected, and metadata was obtained by allowing consumers to describe their emotions about fashion images freely. An emotional classification system with a hierarchical structure, was then constructed by performing frequency and CONCOR analyses on metadata. A final classification system was proposed by supplementing attribute values with reference to findings from previous studies and SNS data.

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • v.25 no.7
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

Classification of Clothing Using Googlenet Deep Learning and IoT based on Artificial Intelligence (인공지능 기반 구글넷 딥러닝과 IoT를 이용한 의류 분류)

  • Noh, Sun-Kuk
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.41-45
    • /
    • 2020
  • Recently, artificial intelligence (AI) and the Internet of things (IoT), which are represented by machine learning and deep learning among IT technologies related to the Fourth Industrial Revolution, are applied to our real life in various fields through various researches. In this paper, IoT and AI using object recognition technology are applied to classify clothing. For this purpose, the image dataset was taken using webcam and raspberry pi, and GoogLeNet, a convolutional neural network artificial intelligence network, was applied to transfer the photographed image data. The clothing image dataset was classified into two categories (shirtwaist, trousers): 900 clean images, 900 loss images, and total 1800 images. The classification measurement results showed that the accuracy of the clean clothing image was about 97.78%. In conclusion, the study confirmed the applicability of other objects using artificial intelligence networks on the Internet of Things based platform through the measurement results and the supplementation of more image data in the future.

Deep Learning for Classification of High-End Fashion Brand Sensibility (딥러닝을 통한 하이엔드 패션 브랜드 감성 학습)

  • Jang, Seyoon;Kim, Ha Youn;Lee, Yuri;Seol, Jinseok;Kim, Seongjae;Lee, Sang-goo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.1
    • /
    • pp.165-181
    • /
    • 2022
  • The fashion industry is creating innovative business models using artificial intelligence. To efficiently utilize artificial intelligence (AI), fashion data must be classified. Until now, such data have been classified focusing only on the objective properties of fashion products. Their subjective attributes, such as fashion brand sensibilities, are holistic and heuristic intuitions created by a combination of design elements. This study aims to improve the performance of collaborative filtering in the fashion industry by extracting fashion brand sensibility using computer vision technology. The image data set of fashion brand sensibility consists of high-end fashion brand photos that share sensibilities and communicate well in fashion. About 26,000 fashion photos of 11 high-end fashion brand sensibility labels have been collected from the 16FW to 21SS runway and 50 years of US Vogue magazines beginning from 1971. We use EfficientNet-B1 to establish the main architecture and fine-tune the network with ImageNet-ILSVRC. After training fashion brand sensibilities through deep learning, the proposed model achieved an F-1 score of 74% on accuracy tests. Furthermore, as a result of comparing AI machine and human experts, the proposed model is expected to be expanded to mass fashion brands.

Research on the Design and Use of Digital Badges to Increase Educational Value (교육적 가치를 높이는 디지털배지 설계와 활용 연구)

  • Youn A Min;Ji-Eun Lee
    • Journal of Information Technology Services
    • /
    • v.22 no.6
    • /
    • pp.71-86
    • /
    • 2023
  • The rapid change in industry and the technological gap give rise to social demand for upskilling and reskilling and spread of alternative education. Against this backdrop, digital certification and career management tools can be used to manage various types of learning activities comprehensively. Digital badges provide various kinds of history information related to individual learning, and the reliability and transparency of the issued information can be strengthened by applying blockchain technology. There have been various discussions about digital badges for a long time, but due to the lack of standards to support the issuance and distribution of digital badges, they have been partially used in some areas. However, interest in digital badges is increasing due to the development of related technologies, establishment of standards, paradigm changes in higher education, and government policies related to nurturing digital talent. This paper deals with the use of digital badges for efficient and transparent learning management and career management in an online learning environment. The researcher analyzes the technical characteristics and use cases of digital badges, and proposes a plan for use in online higher education based on them.

Exploring the Effectiveness of Smart Education in a College Writing Course Utilizing Multimedia Learning Tools

  • Si-Yeon Pyo
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.143-150
    • /
    • 2024
  • With the development of AI, multimedia tools in education offer personalized learning environments, which foster individual competencies. This study aims to examine the effectiveness of smart education as perceived by learners through a case study of university writing classes utilizing multimedia learning tools, and to explore potential applications. To achieve this, a writing course incorporating various multimedia tools to promote interaction was designed and implemented over the course of one semester, targeting 42 university students. Through the semester, student reactions and survey results were analyzed to investigate the effects and satisfaction levels regarding the use of multimedia learning tools in writing instruction as perceived by students. The analysis revealed that multimedia-assisted writing classes effectively fostered learners' autonomy by focusing on individual needs, while also promoting interaction and encouraging spontaneous participation. Students reported recognizing the presence of diverse perspectives by comparing and communicating about each other's writing, leading to an expansion of their own thinking. In using ChatGPT, it was found that students attempted to refine their questions until they obtained the desired answers. They reported that this process deepened their understanding of the essence of the questions. These benefits led to results of high levels of students' active class engagement and satisfaction. This study contributes foundational and empirical data regarding the effectiveness and potential applications of learner-centered smart education as part of fourth industrial revolution integration research.

Development of Artificial Intelligence Education based Convergence Education Program for Classifying of Reptiles and Amphibians (파충류와 양서류 분류를 위한 인공지능 교육 기반의 융합 교육 프로그램 개발)

  • Yi, Soyul;Lee, YoungJun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.168-175
    • /
    • 2021
  • In this study, a transdisciplinary convergence education program was developed to enhance the understanding for classification of reptiles and amphibians in biology education and also to increase AI (Artificial Intelligence) capability by using artificial intelligence education. The main content is to solve the classification of reptiles and amphibians that has been dealt with for a long time in biology education, using a decision tree and ML4K (Machine Learnig for Kids), it was designed for a total of 3 lessons. Experts review was conducted on the developed education program, as a result, the I-CVI(Item Content Validity Index) value was .88~1.00 so that can secure content validity. This education program has the advantage of being able to simultaneously learn about the learning contents of artificial intelligence in informatics and the classification of vertebrates in the biological education. In addition, since it is configured to minimize the cognitive load in the AI using part, it is characterized by the fact that all of any teachers can apply it their lesson easily.