비활성 영역이란 특정 영상을 표현하기 위해 유효하지 않은 화소 값으로 채워지는 영역을 의미한다. 일반적으로 원본 영상의 형태가 사각형 형태가 아닌 경우 이를 사각형 형태로 변환하는 과정에서 주로 발생하며, 특히 3D 영상을 2D로 표현할 때 자주 발생한다. 이러한 비활성 영역은 압축 효율을 크게 저하시키기 때문에, 활성 영역과 비활성 영역의 경계 부분에 필터링 기술 등을 적용해 해결해 왔다. 하지만 일반적인 필터링 적용 기술은 영상의 특성을 적절하게 반영하지 못할 가능성이 크다. 제안하는 기법에서는 영상의 특성과 압축 과정을 고려한 강화학습을 통한 패딩을 진행하였다. 실험결과 제안한 기법이 기존 기법보다 평균 3.4% 성능이 향상됨을 확인할 수 있다.
Objectives: This study investigated the effect of Yukmijihwangtang on cerebral ischemia-induced learning and memory impairment by middle cerebral artery (MCA) occlusion in rats. Methods: The ability of learning and memory of rats was measured using the eight-arm radial maze and the passive avoidance test, and profile of cholinergic neuron was assessed in the medial septum and hippocampus region by immuno-histochemistry. Results: 1. No differences were found between groups in the number of correct choices in acquisition performance during the eight-arm radial maze task. 2. No differences were found between groups on day 1 in the error rate in acquisition performance, which is defined as the number of enters into the same arm more than once within five minutes. After 5 to 6 days of test, the number of errors was significantly reduced in the Yukmijihwangtang group (forebrain ischemia group with Yukmijihwangtang treatment), compared with the ischemia group. 3. The memory processes significantly improved in the Yukmijihwangtang group according to results of the passive avoidance test. 4. The appearance of AchE (acetylcholinesterase) in the CA1 region of hippocampus significantly decreased in the ischemia group, compared with the sham group (untreated group). The appearance of AchE in the same region significantly increased in the Yukmijihwangtang group, compared with the ischemia group. 5. The appearance of ChAT (choline acetyltransferase) in the CA1 region of the hippocampus and medial septum decreased in the ischemia group, compared with the sham group. The appearance of ChAT in the same region significantly increased in the Yukmijihwangtang group, compared with the ischemia group Conclusions: This study provides evidence that Yukmijihwangtang is effective for reviving the ability of learning and memory and damaged neurons in rats with experimental cerebral ischemia.
지리학습의 기본단위인 지역에 대한 학습이 교육현장에서 충실히 이루어지지 못하고 있음은 실제 수업에 적용 가능하면서도 지리적 기본개념까지 발전할 수 있도록 개발된 지역학습 자료가 부족하기 때문이다. 이에 본 연구는 지역학습을 위한 자료개발의 선행단계로서 지역학습의 구성원리를 제시하고, 그에 따라 지역학습의 내용을 선정하는데 목적이 있다. 이를 위해 먼저 지리교육의 기본개념, 즉 인간-환경, 입지, 지역, 상호작용, 변화, 스케일에 의거하여 지역학습의 구성원리를 제시하였다. 다음으로 지역학습의 내용을 선정하기 위하여 지리학의 연구성과를 바탕으로 지역이해의 필요성과 방법, 자연환경과 주민생활, 자원과 산업활동. 생활공간의 형성과 변화, 변화하는 세계와 지역 등 5개 대주제를 선정한 후, 대주제별로 학습자의 필요와 사회적 요구를 반영하고 지리학의 연구성과와 학습자의 일상생활을 결합할 수 있도록 하는 중주제와 소주제를 세분하여 제시하였다. 이들 주제들은 지역의 특성에 따라 적절한 최상의 지역학습이 되도록 교수자 또는 학습자가 주제 계층의 한 부분 또는 일부분들을 결합하여 적용할 수 있다.
3차원 공간정보 구축을 위해 건물 텍스처를 촬영하는 과정에서 폐색영역 문제가 발생한다. 이를 해결하기 위해선 폐색영역을 자동 인식하여 이를 검출하고 텍스처를 자동 보완하는 자동화 기법 연구가 필요하다. 현실적으로 매우 다양한 구조물 형상과 폐색을 발생시키는 경우가 있으므로 이를 극복하는 대안들이 고려되고 있다. 본 연구는 최근 대두되고 있는 딥러닝 기반의 알고리즘을 이용하여 폐색지역 패턴화하고, 학습기반 폐색영역 자동 검출하는 접근을 시도한다. 영상 내 객체 추출에서 우수한 성과를 발표하는 Convolutional Neural Network (CNN) 기법의 향상된 알고리즘인 Faster Region-based Convolutional Network (R-CNN)과 Mask R-CNN 2가지를 이용하여, 건물 벽면 촬영 시 폐색을 유발하는 사람, 현수막, 차량, 신호등에 대한 자동 탐지하는 성능을 알아보기 위해 실험하고, Mask R-CNN의 미리 학습된 모델에 현수막을 학습시켜 자동탐지하는 실험을 통해 적용이 높은 결과를 확인할 수 있었다.
Journal of information and communication convergence engineering
/
제5권1호
/
pp.50-53
/
2007
This paper presents face features detection and a new physiological neuro-fuzzy learning method by using two-dimensional variances based on variation of gray level and by learning for a statistical distribution of the detected face features. This paper reports a method to learn by not using partial face image but using global face image. Face detection process of this method is performed by describing differences of variance change between edge region and stationary region by gray-scale variation of global face having featured regions including nose, mouse, and couple of eyes. To process the learning stage, we use the input layer obtained by statistical distribution of the featured regions for performing the new physiological neuro-fuzzy algorithm.
International journal of advanced smart convergence
/
제11권4호
/
pp.47-56
/
2022
Recently bank card number recognition plays an important role in improving payment efficiency. In this paper we propose a new bank-card number identification algorithm. The proposed algorithm consists of three modules which include edge detection, candidate region generation, and recognition. The module of 'edge detection' is used to obtain the possible digital region. The module of 'candidate region generation' has the role to expand the length of the digital region to obtain the candidate card number regions, i.e. to obtain the final bank card number location. And the module of 'recognition' has Convolutional deep learning Neural Network (CNN) to identify the final bank card numbers. Experimental results show that the identification rate of the proposed algorithm is 95% for the card numbers, which shows 20% better than that of conventional algorithm or method.
Purpose Local governments in each region actively hold local festivals for the purpose of promoting the region and revitalizing the local economy. Existing studies related to local festivals have been actively conducted in tourism and related academic fields. Empirical studies to understand the effects of latent variables on local festivals and studies to analyze the regional economic impacts of festivals occupy a large proportion. Despite of practical need, since few researches have been conducted to predict the number of visitors, one of the criteria for evaluating the performance of local festivals, this study developed a model for predicting the number of visitors through various observed variables using a machine learning algorithm and derived its implications. Design/methodology/approach For a total of 593 festivals held in 2018, 6 variables related to the region considering population size, administrative division, and accessibility, and 15 variables related to the festival such as the degree of publicity and word of mouth, invitation singer, weather and budget were set for the training data in machine learning algorithm. Since the number of visitors is a continuous numerical data, random forest, Adaboost, and linear regression that can perform regression analysis among the machine learning algorithms were used. Findings This study confirmed that a prediction of the number of visitors to local festivals is possible using a machine learning algorithm, and the possibility of using machine learning in research in the tourism and related academic fields, including the study of local festivals, was captured. From a practical point of view, the model developed in this study is used to predict the number of visitors to the festival to be held in the future, so that the festival can be evaluated in advance and the demand for related facilities, etc. can be utilized. In addition, the RReliefF rank result can be used. Considering this, it will be possible to improve the existing local festivals or refer to the planning of a new festival.
본 연구는 노르웨이 Alesund 평생학습네트워크 사례분석을 통해 성공요인을 살펴보고 국내 지역단위 학습네트워트의 대표적인 형태인 중소기업 직업훈련 컨소시업의 성공적인 운영에 필요한 시사점을 제시한 것이다. Alesund 평생학습네트워크의 특징을 요약하면 다음과 같다. 첫째, 기업들의 자발적인 참여로 구성됨에 따라 참여기업의 요구를 적극적으로 반영할 수 있는 지배구조를 갖고 있다. 둘째, 참여기업이 경영환경 변화에 능동적으로 대처할 수 있도록 조직변화와 혁신에 필요한 역량을 개발하고 이를 실행할 수 있는 변화관리프로그램 등이 포함되어 있다. 셋째, 조직학습 이론에 기초하여 평생학습네트워크가 설계되어 참여기업에게 필요한 지식을 공동으로 획득하고 실험하여 공유하는 프로세슬 갖고 있다. 이상의 논의를 바탕으로 국내 중소기업훈련컨소시엄의 성공적인 운영을 위한 시사점을 제시하였다.
It is desirable for autonomous robot systems to possess the ability to behave in a smooth and continuous fashion when interacting with an unknown environment. Although Q-learning requires a lot of memory and time to optimize a series of actions in a continuous state space, it may not be easy to apply the method to such a real environment. In this paper, for continuous state space applications, to solve problem and a triangular type Q-value model\ulcorner This sounds very ackward. What is it you want to solve about the Q-value model. Our learning method can estimate a current Q-value by its relationship with the neighboring states and has the ability to learn its actions similar to that of Q-learning. Thus, our method can enable robots to move smoothly in a real environment. To show the validity of our method, navigation comparison with Q-learning are given and visual tracking simulation results involving an 2-DOF SCARA robot are also presented.
본 논문에서는 지역 전문가를 이용한 새로운 앙상블 방법을 제시하고자 한다. 이 앙상블 방법에서는 학습 데이타를 분할하여 속성 공간의 서로 다른 지역을 이용하여 전문가를 학습시킨다. 새로운 데이타를 분류할 때에는 그 데이타가 속한 지역을 담당하는 전문가들로 가중치 투표를 한다. UCI 기계 학습 데이타 저장소에 있는 10개의 데이타를 이용하여 단일 분류기, Bagging, Adaboost와 정확도를 비교하였다. 학습 알고리즘으로는 SVM, Naive Bayes, C4.5를 사용하였다. 그 결과 지역 전문가의 앙상블 학습 방법이 C4.5를 학습 알고리즘으로 사용한 Bagging, Adaboost와는 비슷한 성능을 보였으며 나머지 분류기보다는 좋은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.