• Title/Summary/Keyword: Learning Ratio

Search Result 823, Processing Time 0.029 seconds

Comparison of Semantic Segmentation Performance of U-Net according to the Ratio of Small Objects for Nuclear Activity Monitoring (핵활동 모니터링을 위한 소형객체 비율에 따른 U-Net의 의미론적 분할 성능 비교)

  • Lee, Jinmin;Kim, Taeheon;Lee, Changhui;Lee, Hyunjin;Song, Ahram;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1925-1934
    • /
    • 2022
  • Monitoring nuclear activity for inaccessible areas using remote sensing technology is essential for nuclear non-proliferation. In recent years, deep learning has been actively used to detect nuclear-activity-related small objects. However, high-resolution satellite imagery containing small objects can result in class imbalance. As a result, there is a performance degradation problem in detecting small objects. Therefore, this study aims to improve detection accuracy by analyzing the effect of the ratio of small objects related to nuclear activity in the input data for the performance of the deep learning model. To this end, six case datasets with different ratios of small object pixels were generated and a U-Net model was trained for each case. Following that, each trained model was evaluated quantitatively and qualitatively using a test dataset containing various types of small object classes. The results of this study confirm that when the ratio of object pixels in the input image is adjusted, small objects related to nuclear activity can be detected efficiently. This study suggests that the performance of deep learning can be improved by adjusting the object pixel ratio of input data in the training dataset.

The Prediction of Durability Performance for Chloride Ingress in Fly Ash Concrete by Artificial Neural Network Algorithm (인공 신경망 알고리즘을 활용한 플라이애시 콘크리트의 염해 내구성능 예측)

  • Kwon, Seung-Jun;Yoon, Yong-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.127-134
    • /
    • 2022
  • In this study, RCPTs (Rapid Chloride Penetration Test) were performed for fly ash concrete with curing age of 4 ~ 6 years. The concrete mixtures were prepared with 3 levels of water to binder ratio (0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash (0 and 30%), and the improved passed charges of chloride ion behavior were quantitatively analyzed. Additionally, the results were trained through the univariate time series models consisted of GRU (Gated Recurrent Unit) algorithm and those from the models were evaluated. As the result of the RCPT, fly ash concrete showed the reduced passed charges with period and an more improved resistance to chloride penetration than OPC concrete. At the final evaluation period (6 years), fly ash concrete showed 'Very low' grade in all W/B (water to binder) ratio, however OPC concrete showed 'Moderate' grade in the condition with the highest W/B ratio (0.47). The adopted algorithm of GRU for this study can analyze time series data and has the advantage like operation efficiency. The deep learning model with 4 hidden layers was designed, and it provided a reasonable prediction results of passed charge. The deep learning model from this study has a limitation of single consideration of a univariate time series characteristic, but it is in the developing process of providing various characteristics of concrete like strength and diffusion coefficient through additional studies.

Liver-to-Spleen Volume Ratio Automatically Measured on CT Predicts Decompensation in Patients with B Viral Compensated Cirrhosis

  • Ji Hye Kwon;Seung Soo Lee;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Ho Sung Kim;Chul-min Lee;Kang Mo Kim;So Jung Lee;So Yeon Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1985-1995
    • /
    • 2021
  • Objective: Although the liver-to-spleen volume ratio (LSVR) based on CT reflects portal hypertension, its prognostic role in cirrhotic patients has not been proven. We evaluated the utility of LSVR, automatically measured from CT images using a deep learning algorithm, as a predictor of hepatic decompensation and transplantation-free survival in patients with hepatitis B viral (HBV)-compensated cirrhosis. Materials and Methods: A deep learning algorithm was used to measure the LSVR in a cohort of 1027 consecutive patients (mean age, 50.5 years; 675 male and 352 female) with HBV-compensated cirrhosis who underwent liver CT (2007-2010). Associations of LSVR with hepatic decompensation and transplantation-free survival were evaluated using multivariable Cox proportional hazards and competing risk analyses, accounting for either the Child-Pugh score (CPS) or Model for End Stage Liver Disease (MELD) score and other variables. The risk of the liver-related events was estimated using Kaplan-Meier analysis and the Aalen-Johansen estimator. Results: After adjustment for either CPS or MELD and other variables, LSVR was identified as a significant independent predictor of hepatic decompensation (hazard ratio for LSVR increase by 1, 0.71 and 0.68 for CPS and MELD models, respectively; p < 0.001) and transplantation-free survival (hazard ratio for LSVR increase by 1, 0.8 and 0.77, respectively; p < 0.001). Patients with an LSVR of < 2.9 (n = 381) had significantly higher 3-year risks of hepatic decompensation (16.7% vs. 2.5%, p < 0.001) and liver-related death or transplantation (10.0% vs. 1.1%, p < 0.001) than those with an LSVR ≥ 2.9 (n = 646). When patients were stratified according to CPS (Child-Pugh A vs. B-C) and MELD (< 10 vs. ≥ 10), an LSVR of < 2.9 was still associated with a higher risk of liver-related events than an LSVR of ≥ 2.9 for all Child-Pugh (p ≤ 0.045) and MELD (p ≤ 0.009) stratifications. Conclusion: The LSVR measured on CT can predict hepatic decompensation and transplantation-free survival in patients with HBV-compensated cirrhosis.

A Feature Point Recognition Ratio Improvement Method for Immersive Contents Using Deep Learning (딥 러닝을 이용한 실감형 콘텐츠 특징점 인식률 향상 방법)

  • Park, Byeongchan;Jang, Seyoung;Yoo, Injae;Lee, Jaechung;Kim, Seok-Yoon;Kim, Youngmo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.419-425
    • /
    • 2020
  • The market size of immersive 360-degree video contents, which are noted as one of the main technology of the fourth industry, increases every year. However, since most of the images are distributed through illegal distribution networks such as Torrent after the DRM gets lifted, the damage caused by illegal copying is also increasing. Although filtering technology is used as a technology to respond to these issues in 2D videos, most of those filtering technology has issues in that it has to overcome the technical limitation such as huge feature-point data volume and the related processing capacity due to ultra high resolution such as 4K UHD or higher in order to apply the existing technology to immersive 360° videos. To solve these problems, this paper proposes a feature-point recognition ratio improvement method for immersive 360-degree videos using deep learning technology.

Topic Analysis of the National Petition Site and Prediction of Answerable Petitions Based on Deep Learning (국민청원 주제 분석 및 딥러닝 기반 답변 가능 청원 예측)

  • Woo, Yun Hui;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.45-52
    • /
    • 2020
  • Since the opening of the national petition site, it has attracted much attention. In this paper, we perform topic analysis of the national petition site and propose a prediction model for answerable petitions based on deep learning. First, 1,500 petitions are collected, topics are extracted based on the petitions' contents. Main subjects are defined using K-means clustering algorithm, and detailed subjects are defined using topic modeling of petitions belonging to the main subjects. Also, long short-term memory (LSTM) is used for prediction of answerable petitions. Not only title and contents but also categories, length of text, and ratio of part of speech such as noun, adjective, adverb, verb are also used for the proposed model. Our experimental results show that the type 2 model using other features such as ratio of part of speech, length of text, and categories outperforms the type 1 model without other features.

Super Resolution using Dictionary Data Mapping Method based on Loss Area Analysis (손실 영역 분석 기반의 학습데이터 매핑 기법을 이용한 초해상도 연구)

  • Han, Hyun-Ho;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.19-26
    • /
    • 2020
  • In this paper, we propose a method to analyze the loss region of the dictionary-based super resolution result learned for image quality improvement and to map the learning data according to the analyzed loss region. In the conventional learned dictionary-based method, a result different from the feature configuration of the input image may be generated according to the learning image, and an unintended artifact may occur. The proposed method estimate loss information of low resolution images by analyzing the reconstructed contents to reduce inconsistent feature composition and unintended artifacts in the example-based super resolution process. By mapping the training data according to the final interpolation feature map, which improves the noise and pixel imbalance of the estimated loss information using a Gaussian-based kernel, it generates super resolution with improved noise, artifacts, and staircase compared to the existing super resolution. For the evaluation, the results of the existing super resolution generation algorithms and the proposed method are compared with the high-definition image, which is 4% better in the PSNR (Peak Signal to Noise Ratio) and 3% in the SSIM (Structural SIMilarity Index).

Method Research For Contents Express Ratio Of Display To Improve Learning Effect Of Smart Phone education media contents (스마트폰 교육미디어콘텐츠의 학습효과 향상용 콘텐츠 표출 비율 제고 방안에 관한 연구)

  • Lee, Jaewoo;Cha, Jaesang;Choi, Seongjhin;Lee, Seonhee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.91-95
    • /
    • 2014
  • We could use a social networking service such as data communication, personalized service through smart devices as Tablet computers and smart phones. Because of these characteristics, suitable lectures are provided to mobile device. especially, in Korea Cyber University already had built a lot of infrastructures. But, many mobile devices are used in a small display environment. it could effect on reduce Students' efficiency from taking courses. Therefore, we need effectively in a small display content layout for overcome these problems. In this paper, proposed the platform for Improve learning effect in smartphone education. It studied based on golden section and golden spiral theory. and also, we developed layout for content development using vector method illustration program.

Application of Statistical and Machine Learning Techniques for Habitat Potential Mapping of Siberian Roe Deer in South Korea

  • Lee, Saro;Rezaie, Fatemeh
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.

Contact Detection based on Relative Distance Prediction using Deep Learning-based Object Detection (딥러닝 기반의 객체 검출을 이용한 상대적 거리 예측 및 접촉 감지)

  • Hong, Seok-Mi;Sun, Kyunghee;Yoo, Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.39-44
    • /
    • 2022
  • The purpose of this study is to extract the type, location, and absolute size of an object in an image using a deep learning algorithm, predict the relative distance between objects, and use this to detect contact between objects. To analyze the size ratio of objects, YOLO, a CNN-based object detection algorithm, is used. Through the YOLO algorithm, the absolute size and position of an object are extracted in the form of coordinates. The extraction result extracts the ratio between the size in the image and the actual size from the standard object-size list having the same object name and size stored in advance, and predicts the relative distance between the camera and the object in the image. Based on the predicted value, it detects whether the objects are in contact.

User Association and Power Allocation Scheme Using Deep Learning Algorithmin Non-Orthogonal Multiple Access Based Heterogeneous Networks (비직교 다중 접속 기반 이종 네트워크에서 딥러닝 알고리즘을 이용한 사용자 및 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.430-435
    • /
    • 2022
  • In this paper, we consider the non-orthogonal multiple access (NOMA) technique in the heterogeneous network (HetNET) consisting of a single macro base station (BS) and multiple small BSs, where the perfect successive interference cancellation is assumed for the NOMA signals. In this paper, we propose a deep learning-based user association and power allocation scheme to maximize the data rate in the NOMA-based HetNET. In particular, the proposed scheme includes the deep neural network (DNN)-based user association process for load balancing and the DNN-based power allocation process for data-rate maximization. Through the simulation assuming path loss and Rayleigh fading channels between BSs and users, the performance of the proposed scheme is evaluated, and it is compared with the conventional maximum signal-to-interference-plus-noise ratio (Max-SINR) scheme. Through the performance comparison, we show that the proposed scheme provides better sum rate performance than the conventional Max-SINR scheme.