We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.
This paper proposes a modified error function to improve the error back-propagation (EBP) algorithm for multi-Layer perceptrons (MLPs) which suffers from slow learning speed. It can also suppress over-specialization for training patterns that occurs in an algorithm based on a cross-entropy cost function which markedly reduces learning time. In the similar way as the cross-entropy function, our new function accelerates the learning speed of the EBP algorithm by allowing the output node of the MLP to generate a strong error signal when the output node is far from the desired value. Moreover, it prevents the overspecialization of learning for training patterns by letting the output node, whose value is close to the desired value, generate a weak error signal. In a simulation study to classify handwritten digits in the CEDAR [1] database, the proposed method attained 100% correct classification for the training patterns after only 50 sweeps of learning, while the original EBP attained only 98.8% after 500 sweeps. Also, our method shows mean-squared error of 0.627 for the test patterns, which is superior to the error 0.667 in the cross-entropy method. These results demonstrate that our new method excels others in learning speed as well as in generalization.
비대면 교육의 중요성 및 필요에 따른 수요가 증가함에 따라 국내외 온라인 교육 오픈 플랫폼이 활성화되고 있다. 본 플랫폼은 대학 등 교육 전문기관과 달리 학습자의 자율성이 높은 특징을 가지며 이에 따라 개인화된 학습 도구를 지원하기 위한 학습 행동 데이터의 분석 연구가 중요시 되고 있다. 실제적인 학습 행동을 이해하고 패턴을 도출하기 위하여 프로세스 마이닝이 다수 활용되었지만 온라인 교육 플랫폼과 같이 자기 관리형(Self-regulated) 환경에서의 학습 로그를 기반한 사례는 부족하다. 또한, 대부분 프로세스 모델 도출 등의 모델 관점에서의 접근이며 분석 결과의 실제적인 적용을 위한 개별 패턴 및 인스턴스 관점에서의 방법 제시는 미흡하다. 본 연구에서는 온라인 교육 오픈 플랫폼 내 학습 패턴을 파악하기 위하여 프로세스 마이닝을 활용한 분석 방법을 제시한다. 학습 패턴을 다각도로 분석하기 위하여 모델, 패턴, 인스턴스 관점에서의 분석 방법을 제시하며, 프로세스 모델 발견, 적합도 검사, 군집화 기법, 예측 알고리즘 등 다양한 기법을 활용한다. 본 방법은 국내 오픈 교육 플랫폼 내 기계학습 관련 강좌의 학습 로그를 추출하여 분석하였다. 분석 결과 온라인 강의의 특성에 맞게 비구조화된 프로세스 모델을 도출할 수 있었으며 구체적으로 한 개의 표준 학습 패턴과 세 개의 이상 학습 패턴으로 세분화할 수 있었다. 또한, 인스턴스별 패턴 분류 예측 모델을 도출한 결과 전체 흐름 중 초기 30%의 흐름을 바탕으로 예측하였을 때 0.86의 분류 정확도를 보였다. 본 연구는 프로세스 마이닝을 활용하여 학습자의 패턴을 체계적으로 분석한다는 점에서 기여점을 가진다.
Purpose: The purpose of this study was to identify and understand the self-directed learning patterns of nurses. Q methodology was used to collect the data. Method: For the research method, 43 Q-statements were collected through individual interviews and a review of related literature. The 43 Q-statements were classified by the 34 participants in the study and the data was analyzed by the PC-QUANL program with principal component analysis. Result: There were 4 different patterns of self-directed learning classified as follows : Nurses in Type I the Future Provision Type, studied to promote their own professional development and leadership qualities for the future. Nurses in Type II, the Learning Passion Type, enjoyed learning something new and had a strong learning desire. Nurses in Type III, the Self-reflective Type, continuously evaluated self and their own practice by introspection. Nurses in Type IV, the Accompanying Companion Type, studies with companion support and maintained a collaborative relationship rather than competing with each other. Conclusion: This study explains and allows us to understand self-directed learning in nurses. Thus this study will contribute to building a theoretical base for the development of a self-directed learning model in nursing practice.
메모리 기반 추론 기법은 분류시 입력 패턴과 저장된 패턴들 사이의 거리를 이용하는 교사 학습 기법으로써, 거리 기반 학습 알고리즘이라고도 한다. 메모리 기반 추론은 k_NN 분류기에 기반한 것으로, 학습은 추가 처리 없이 단순히 학습 패턴들을 메모리에 저장함으로써 수행된다. 본 논문에서는 기존의 k-NN 분류기보다 효율적인 분류가 가능하고, 점진적 학습 기능을 갖는 새로운 알고리즘을 제안한다. 또한 제안된 기법은 노이즈에 민감하지 않으며, 효율적인 메모리 사용을 보장한다.
본 연구는 한국의 많은 영문법 학습 교재에 수록되어 있는 5형식 문형 분류에 대한 설명의 타당성을 검토하기 위해 실시되었다. 외국어 학습자를 위해 교재에 수록되어 있는 문법을 '학습 문법'으로 명명하고, 교재 집필자가 학습 문법을 설정하고 교재를 구성하기 위해 기준으로 삼아야 하는 문법을 '참조 문법'으로 규정한 후, 이 두 문법에서의 문형 설명을 비교하여 국내 영문법 학습 교재에서 나타나는 설명의 단순화 및 오류를 검토하였다. 5문형 체계는 일본식 문법이라는 인식이 있으나, 이 분류 방식은 C. T. Onions에 의해 1929년 처음 소개된 이론으로서, 오히려 영어학적 이론 문법이 영문법 학습 교재에 반영된 예로 볼 수 있었다. 특히 '필수적 부사구'와 '유표적 구문' 등에 관해 참조 문법의 내용이 반영된 새로운 설명의 시도들도 영문법 학습 교재 내에서 확인되었다. 정확성과 타당성에 기초한 학습 문법을 마련하기 위해 교재 집필자와 교사들이 해외의 권위있는 참조 문법서 및 이론 문법의 연구 성과를 좀 더 적극적으로 활용한다면 영문법 학습 교재에서 발견되는 문법 설명의 오류를 피하고 고급 학습자를 대상으로도 더욱 정확한 문법 체계를 교수할 수 있을 것이다.
In this paper, we propose multiple component neural network(MCNN) which learn partitioned patterns in each multiple component neural networks by reducing dimensions of input pattern vector using PCA (principal component analysis). Procesed neural network use Oja's rule that has a role of PCA, output patterns are used a slearning patterns on small component neural networks and we call it CBP. For simply not solved patterns in a network, we solves it by regenerating new CBP neural networks and by performing dynamic partitioned pattern learning. Simulation results shows that proposed MCNN neural networks are very small size networks and have very fast learning speed compared with multilayer neural network EBP.
There are many reasons why foreigners have difficulties learning English. In addition to the difference between English and the learner's grammar, the large number of irregularities found in English become another obstacle to learning English. Understanding the difference and the irregularities will help us not only have a good command of English but also teach English more effectively. Many irregular or alternating patterns, or even anomalies in Modern English are the results of historical changes. In this paper, I would like to focus on some of the irregular or alternating patterns found in different components of the grammar of English and to show how they can be accounted for historically. Through this study, I would like to show that the irregular patterns and anomalies in English were once regular and systematic, they have deviated from the regular patterns of the grammar as time has gone by, and they have survived in Modern English as irregular and alternating patterns. Many of the irregular or alternating patterns can be traced back by phonological, morphological and/or semantic changes in the history of English. Finally, by looking at language history, we can hold a more tolerant view on many anomalies present in English.
This paper presents a deep learning-based weight sensor, using optical speckle patterns of multimode fiber, designed for real-time intrusion detection. The weight sensor has been trained to identify 11 distinct speckle patterns, ranging in weight from 0.0 kg to 2.0 kg, with an interval of 200 g between each pattern. The estimation for untrained weights is based on the generalization capability of deep learning. This results in an average weight error of 243.8 g. Although this margin of error precludes accurate weight measurement, the system's ability to detect abrupt weight changes makes it a suitable choice for intrusion detection applications. The weight sensor is integrated with the Google Teachable Machine, and real-time intrusion notifications are facilitated by the ThingSpeakTM cloud platform, an open-source Internet of Things (IoT) application developed by MathWorks.
초등학생들을 대상으로 한 패턴 학습의 중요성에 비해 실제 저학년 학생들의 패턴에 대한 이해를 자세히 조사한 연구는 거의 없다. 이에 본 연구는 초등학교 2학년 학생들의 패턴에 대한 이해 실태를 조사하였다. 특히 2학년에서는 규칙 찾기 단원을 통해 패턴에 대한 학습이 이루어지기 때문에 해당 단원의 학습 전과 후의 이해 실태를 비교 분석하였다. 이를 위해 저학년 학생들의 패턴 학습 지도에 대한 선행 연구를 토대로 학생들의 패턴에 대한 이해를 측정할 수 있는 검사 도구를 개발하여, 최종 189명 학생들의 자료를 분석하였다. 연구 결과, 대부분의 문항에서 사전 검사에 비해 사후 검사에서 정답률이 높게 나와 규칙 찾기 단원의 학습 효과가 있는 것으로 판단된다. 그러나 학생들은 기하나 수 패턴에서 두 개의 구성 요소가 동시에 변화하는 규칙 찾기, 구조가 유사한 패턴 찾기, 증가 기하 패턴을 수 패턴으로 바꾸어 표현하기, 증가 패턴에서 빈 항을 구하기, 여러 가지 답이 가능한 패턴의 특정한 항을 추측하기 등에서 어려움을 겪는 것으로 드러났다. 이와 같은 연구 결과를 바탕으로 본 연구에서는 초등학교 저학년 학생들의 패턴 이해 및 지도에 대한 시사점을 논의하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.