KSII Transactions on Internet and Information Systems (TIIS)
/
제2권5호
/
pp.239-252
/
2008
To facilitate the processes of e-learning resource description, discovery and reuse, e-learning objects should be appropriately described and classified using standard metadata that need to be published in a registry to reduce duplication of effort and enhance semantic interoperability. This paper describes how standard ebXML registries can be used for semantic grid computing for annotating, storing, discovering and retrieving e-learning object metadata. For semantic annotation of e-learning objects, IEEE Learning Object Metadata (LOM) is adopted as the metadata ontology. In order to support the e-learning metadata ontology in interoperable ebXML registries, a mapping scheme between LOM and ebXML Registry Information Model (RIM) is proposed. The usefulness of sharing e-learning object metadata is demonstrated by prototyping a semantic registry based on the scheme.
이러닝 자원에 대한 재사용 과정을 편리하게 하기 위해서는 표준을 준수하는 메타데이터를 사용하여 이러닝 객체를 적정하게 기술하고 분류하는 작업이 필수적으로 요구된다. 이러한 메타데이터는 이러닝 객체의 재사용에 있어서 중복된 노력을 최소화하고 의미를 상호 이해할 수 있도록 등록저장소에 공개되는 것이 바람직하다. 본 논문은 이러닝 객체에 관한 메타데이터를 생성하고, 저장하고, 발견하며, 추출하는데 있어서 국제 표준인 ebXML(Electronic Business using extensible Markup Language) 등록저장소를 이용하는 방안을 제시한다. 국제적으로 광범위하게 채택되고 있는 IEEE LOM 표준을 준수하여 작성된 이러닝 객체 메타데이터를 ebXML 등록저장소에서 표현하고 관리할 수 있도록, LOM과 ebXML 정보모델간의 변환 체계를 제시하고, 이를 바탕으로 ebRR4LOM이라고 하는 이러닝 등록저장소 프로토 타입을 개발하여 이러한 등록저장소의 유용함을 설명한다.
웹 기반 교육의 대중화로 학습 보조 도구를 이용한 다양한 웹 학습 방법들이 제시되고 있으며 또한 이틀 시스템의 운용 환경, 컨텐츠명세 그리고 활용 등의 상호 운용성 지원을 위한 표준화에 대한 연구가 국제표준기관 등을 통해 활발히 이루어지고 있다. 특히 e-learning 개발 환경을 위한 Learning Technology Standard Architecture(LTSA)를 기능별 5계층을 IEEK에서 제정하였다. 이 LTSA의 학습 보조 도구 표준화 영역에서 학습과정 피드백을 제공하는 질의 응답 학습 방법에 대한 표준규약기능을 명세하지 않고 있다. 본 논문에서는 국제표준화 기술인 ITSA 시스템 구성중 제 3계층을 기반한 질의 응답 학습 도구에 대해 연구한다. 데이터 중심으로 작성된 LTSA 컴포넌트를 객체지향 또는 컴포넌트 패라다임으로 재 정의하는 모델을 제안하고 기존의 Loaming Object Meatdata(LOM)을 참조하여 질의 응답 메타 데이터인 Query Answer Metadata(QAM)를 서술한다. 이들 재정의 모델과 QAM을 통합한 Query Answer Learning Tool(QALT)를 분석, 설계하여 프로토타이핑시스템으로 구현한다. 이를 통해 웹 기반 교육의 효율성 및 관련 도구 개발의 품질 및 생산성 효율을 가진다.
웹이 보편화되고 웹 기반 학습을 관리하고 제공해 주는 학습관리시스템이 늘어남에 따라 이제 학습자는 시공간에 제약을 받지 않는 학습 환경을 체험 할 수 있게 되었다. 하지만 기존의 학습 관리 시스템들은 적합한 학습을 제공하기 위해 유용하고 적합한 메타데이터를 사용하고 있지 않다 이러한 문제점을 해결하기 위해서 학습관리 시스템에서는 학습자에게 다양한 학습 체험과 향상된 검색 능력을 제공할 수 있도록 학습자의 특성이나 많은 자원에 관한 학습 메타데이터를 자유롭게 정의하고 관리해야 할 필요가 있다. 본 논문에서는 학습관리시스템에서 부가적인 학습 메타데이터를 사용할 수 있도록 하기 위하여 시맨틱 웹의 기반이 되는 언어인 RDF(Resource Description Framework)를 이용한 검색 방법과 학습 메타데이터 제작하고 관리할 수 있는 방법을 두 가지 형태로 제안하였다. 차세대 메타데이터 관리 방법을 통해 교수자는 빠르고 편리하게 차세대 학습 메타데이터를 작성하고 저장할 뿐 아니라 학습자에게 정확하고 확장된 검색방법을 제공한다.
본 연구는 인터넷 기반의 교육정보서비스 기관에서 채택하고 있는 학습객체의 개념을 도입하여 학교도서관 정보시스템(DLS)의 메타데이터에 교육 관련 요소를 추가, 확장할 수 있는 방안을 제시하고자 한다. 교수${\cdot}$학습의 상황에 따라서 정보자원에 접근토록 하고, 정보자원에 포함된 내부 데이터 요소의 제반 특성을 메타데이터로 기술하고 색인 함으로써 학습객체 단위로 접근할 수 있는 방안을 제시하는데 목적이 있다. 기존의 DLS의 메타데이터에 , , 요소를 추가하여 교수${\cdot}$학습 상황에 따라서 정보자원에 접근할 수 있도록 하고 요소를 이용하여 내부 학습객체의 개념을 수용할 수 있는 방안을 제시하였다.
본 연구는 SCORM 기반 학습 객체의 메타데이타 생성 즉 Asset, SCO, Contents Aggregation과 Contents Package에 대한 메타데이터를 생성하는 시스템(MetaGene)을 개발한다. SCORM 을 지원하는 LMS내 API 어댑터와 인터페이스를 위한 학습 객체 내에 API 활성화 함수를 내장시키고, 데이터 모델을 기반으로 학습 과정을 트래킹 하는 코드도 포함 시킨다. 또한 학습 객체들이 LMS에 전송되게 PIF(Package Interchange File)로 패키징 시킨다. MetaGene에 생성된 학습객체의 메타데이터와 컨텐츠 패키지의 manifest file을 $SCORM^{(TM)}$ Conformance Testsuite을 이용하여 유효성을 검증한다.
본 논문에서는 딥러닝을 적용하여 미디어 내의 등장인물 및 사물을 인식, 메타데이터를 추출하고 이를 통해 아카이브를 구축하는 시스템을 개발하였다. 방송 분야에서 비디오, 오디오, 이미지, 텍스트 등의 멀티미디어 자료들을 디지털 컨텐츠로 전환하기 시작한지는 오래 되었지만, 아직 구축해야 할 자료들은 방대하게 남아있다. 따라서 딥러닝 기반의 메타데이터 생성 시스템을 구현하여 미디어 아카이브 구축에 소모되는 시간과 비용을 절약 할 수 있도록 하였다. 전체 시스템은 학습용 데이터 생성 모듈, 사물 인식 모듈, 등장인물 인식 모듈, API 서버의 네 가지 요소로 구성되어 있다. 미디어 내에서 등장인물 및 사물을 인식하여 메타데이터로 추출할 수 있도록 딥러닝 기술로 사물 인식 모듈, 얼굴 인식 모듈을 구현하였다. 딥러닝 신경망을 학습시키기 위한 데이터를 구축하기 용이하도록 학습용 데이터 생성 모듈을 별도로 설계하였으며 얼굴 인식, 사물 인식의 기능은 API 서버 형태로 구성하였다. 1500명의 인물, 80종의 사물 데이터를 사용하여 신경망을 학습시켰으며 등장인물 테스트 데이터에서 98%, 사물 데이터에서 42%의 정확도를 확인하였다.
본 연구의 목적은 랜드마크 이미지의 AI 학습용 데이터 구축을 위한 메타데이터 표준 설계 방안을 제시하기 위함이다. 이를 위해, 이미지 검색시스템의 종류와 각각의 색인 방식에 관한 최신 기술 현황을 포괄적으로 조사하여 분석하고, AI 머신러닝을 적용한 랜드마크 인식에 필수적인 학습용 공개 데이터셋과 이미지 객체 인식에 관한 기계학습 도구를 조사하였다. 이를 통해, 랜드마크 이미지 AI 학습용 데이터에 최적화된 메타데이터 요소를 선정하고 각각의 요소에 대한 입력 데이터를 정의하였다. 결론 및 제언에서는 랜드마크 인식을 활용한 추천시스템을 포함한 응용서비스 개발 방안을 논의하였다.
XML은 데이터 관리와 표현의 유연성으로 인해 웹의 새로운 개발 도구로 자리를 잡아가고 있으며, 컴퓨터 교육에서는 학습객체라는 많은 웹 컨텐츠들을 통합하는 도구로도 사용되고 있다. 하지만 학습객체를 통합하고 관리하는 온라인 학습 시스템을 구현하기에 앞서, 구현 시스템에서 학습객체를 처리하기 위한 메타데이터를 어떻게 저장하고 추출 및 통합하느냐의 연구가 선행되어져야 한다. 따라서 본 연구에서는 3-tier 방식의 온라인 학습 시스템과 메타데이터가 저장된 데이터베이스 서버를 구현할 때 필요한 메타데이터 추출방법의 하나로 DBMS의 웹서비스를 이용하는 방법을 제안하고자 한다. 제안된 방법의 효율성 측정을 위해 MS SQL Server 2000과 Oracle 9i를 대상으로 30여개의 샘플 메타데이터를 저장하고, 이를 추출하는 응답시간을 측정해 보았다. 이 방법을 사용하기 위해서는 추출된 메타데이터를 DOM/SAX 와 같은 XML 처리 파서가 필요하지만, 측정된 결과 비교적 빠른 응답시간을 보여 데이터베이스에 저장된 메타데이터를 추출하고 통합하는 한 방법으로 충분히 사용할 수 있다는 결과를 얻었다.
본 연구에서는 SCORM 시퀀싱 모델을 기반으로 학습객체의 구조에 대한 정보, 학습자에게 학습 객체를 어떻게 전달할 지를 결정하는 규칙 등을 포함하고 있는 학습 컨텐츠 구조를 제시한다. 다양한 학습 환경에서 학습 컨텐츠 객체의 재사용과 공유가 쉬워진다. 서로 다른 교수법을 적용하여 학습이 진행되도록 동일한 학습 객체들에 대한 시퀀싱 생성 도구를 개발한다. 또한 학습자 정보 트래킹을 위한 SCO(Sharable Content Object) 함수를 추가하고 학습 객체가 SCORM RTE(Run-Time Environment)와 통신을 위해 PIF(Package Interchange File)로 자동 패키징 시킨다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.