• Title/Summary/Keyword: Learning Object

Search Result 1,551, Processing Time 0.03 seconds

Implementation of Moving Object Recognition based on Deep Learning (딥러닝을 통한 움직이는 객체 검출 알고리즘 구현)

  • Lee, YuKyong;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2018
  • Object detection and tracking is an exciting and interesting research area in the field of computer vision, and its technologies have been widely used in various application systems such as surveillance, military, and augmented reality. This paper proposes and implements a novel and more robust object recognition and tracking system to localize and track multiple objects from input images, which estimates target state using the likelihoods obtained from multiple CNNs. As the experimental result, the proposed algorithm is effective to handle multi-modal target appearances and other exceptions.

Development and Application of the Learning Application of the Rotating Object (회전체 학습 어플리케이션 개발 및 활용)

  • Chang, Chiwoong;Kim, Kapsu
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.549-557
    • /
    • 2014
  • The learning application of the rotating object utilizing smart devices, it is possible by using the touch functionality and 3D graphics to enhance the realism and operational feeling, and to overcome the limitations of learning content existing. In this study, I designed a "rotation class" based on the learning contents of elementary and middle mathematics education and developed the learning application which driven by smart Android-based device by using Andoroid API class and the OpenGL ES Because this application is driven by the smart devices, learners easily can make the rotated objects and observe them. It can be utilized in various for elementary and middle education.

Accurate Human Localization for Automatic Labelling of Human from Fisheye Images

  • Than, Van Pha;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.769-781
    • /
    • 2017
  • Deep learning networks like Convolutional Neural Networks (CNNs) show successful performances in many computer vision applications such as image classification, object detection, and so on. For implementation of deep learning networks in embedded system with limited processing power and memory, deep learning network may need to be simplified. However, simplified deep learning network cannot learn every possible scene. One realistic strategy for embedded deep learning network is to construct a simplified deep learning network model optimized for the scene images of the installation place. Then, automatic training will be necessitated for commercialization. In this paper, as an intermediate step toward automatic training under fisheye camera environments, we study more precise human localization in fisheye images, and propose an accurate human localization method, Automatic Ground-Truth Labelling Method (AGTLM). AGTLM first localizes candidate human object bounding boxes by utilizing GoogLeNet-LSTM approach, and after reassurance process by GoogLeNet-based CNN network, finally refines them more correctly and precisely(tightly) by applying saliency object detection technique. The performance improvement of the proposed human localization method, AGTLM with respect to accuracy and tightness is shown through several experiments.

Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning (딥러닝을 활용한 단안 카메라 기반 실시간 물체 검출 및 거리 추정)

  • Kim, Hyunwoo;Park, Sanghyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2019
  • This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.

Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System (심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증)

  • Kim, Youngsoo;Lee, Junbeom;Lee, Chanyoung;Jeon, Hyeri;Kim, Seungpil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.

A Study on Worker Risk Reduction Methods using the Deep Learning Image Processing Technique in the Turning Process (선삭공정에서 딥러닝 영상처리 기법을 이용한 작업자 위험 감소 방안 연구)

  • Bae, Yong Hwan;Lee, Young Tae;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.1-7
    • /
    • 2021
  • The deep learning image processing technique was used to prevent accidents in lathe work caused by worker negligence. During lathe operation, when the chuck is rotated, it is very dangerous if the operator's hand is near the chuck. However, if the chuck is stopped during operation, it is not dangerous for the operator's hand to be in close proximity to the chuck for workpiece measurement, chip removal or tool change. We used YOLO (You Only Look Once), a deep learning image processing program for object detection and classification. Lathe work images such as hand, chuck rotation and chuck stop are used for learning, object detection and classification. As a result of the experiment, object detection and class classification were performed with a success probability of over 80% at a confidence score 0.5. Thus, we conclude that the artificial intelligence deep learning image processing technique can be effective in preventing incidents resulting from worker negligence in future manufacturing systems.

An analysis of hardware design conditions of EGML-based moving object detection algorithm (EGML 기반 이동 객체 검출 알고리듬의 하드웨어 설계조건 분석)

  • An, Hyo-sik;Kim, Keoung-hun;Shin, Kyung-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.371-373
    • /
    • 2015
  • This paper describes an analysis of hardware design conditions of moving object detection algorithm which is based on effective Gaussian mixture learning (EGML). The simulation model of EGML algorithm is implemented using OpenCV, and it is analyzed that the effects of parameter values on background learning time and moving object detection sensitivity for various images. In addition, optimal design conditions for hardware implementation of EGML-based MOD algorithm are extracted from fixed-point simulations for various bit-width parameters.

  • PDF

Development of Runway Cleaning Robot Based on Deep Learning (딥러닝 기반 활주로 청소 로봇 개발)

  • Park, Ga-Gyeong;Kim, Ji-Yong;Keum, Jae-Yeong;Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.140-145
    • /
    • 2021
  • This paper deals with the development of a deep-learning-based runway cleaning robot using an optical camera. A suitable model to realize real-time object detection was investigated, and the differences between the selected YOLOv3 and other deep learning models were analyzed. In order to check whether the proposed system is applicable to the actual runway, an experiment was conducted by making a prototype of the robot and a runway model. As a result, it was confirmed that the robot was well developed because the detection rate of FOD (Foreign Object Debris) and cracks was high, and the collection of foreign substances was carried out smoothly.

Auto Labelling System using Object Segmentation Technology (객체 분할 기법을 활용한 자동 라벨링 구축)

  • Moon, Jun-hwi;Park, Seong-hyeon;Choi, Jiyoung;Shin, Wonsun;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.222-224
    • /
    • 2022
  • Deep learning-based computer vision applications in the field of object segmentation take a transfer learning method using hyperparameters and models pretrained and distributed by STOA techniques to improve performance. Custom datasets used in this process require a lot of resources, such as time and labeling, in labeling tasks to generate Ground Truth information. In this paper, we present an automatic labeling construction method using object segmentation techniques so that resources such as time and labeling can be used less to build custom datasets used in deep learning neural networks.

  • PDF

A Research about e-Learning Contents Management System using Version Management Techniques and LCMS (버전관리 기법과 LCMS의 연동을 통한 e-Learning학습 콘텐츠 관리 시스템에 관한 연구)

  • Kim, Nam-Ho;Park, Young-B.
    • 한국정보교육학회:학술대회논문집
    • /
    • 2008.01a
    • /
    • pp.251-256
    • /
    • 2008
  • e-Learning은 시 공간의 제약 없이 교수자와 학습자간의 교육이 이루어진다는 장점이 있는 반면, 다양한 학습자의 요구를 만족시킬 만큼 충분한 학습 콘텐츠의 제작이 어렵다는 단점이 있다. 이러한 단점을 해결하기 위해 ADL(Advanced Distributed Learning)의 SCORM(Sharable Content Object Reference Modeling)의 표준에 따라 e-Learning의 학습 콘텐츠를 학습객체(Learning Object)로 제작하고, 이를 SCORM의 표준을 지원하는 LCMS(Learning Content Management System)를 이용하여 관리하려는 연구가 진행되고 있다. LCMS를 이용할 경우 학습 콘텐츠의 제사용성을 높이므로 학습 콘텐츠의 제작 및 관리가 무척 용이해진다는 장점이 있는 반면 탈맥락화된 학습 콘텐츠를 제작하기는 매우 어렵다는 단점을 가진다. 본 연구에서는 이러한 문제점을 해결하기 위해 버전관리 기법을 이용한 탈맥락화된 학습 콘텐츠에 대한 제작이 용이한 시스템을 연구했다.

  • PDF