• Title/Summary/Keyword: Learning Node

Search Result 235, Processing Time 0.03 seconds

A Construction Method for Personalized e-Learning System Using Dynamic Estimations of Item Parameters and Examinees' Abilities

  • Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.19-23
    • /
    • 2008
  • This paper presents a novel method to construct a personalized e-Learning system based on dynamic estimations of item parameters and learners' abilities, where the learning content objects are of the same intrinsic quality or homogeneously distributed and the estimations are carried out using IRT(Item Response Theory). The system dynamically connects the test and the corresponding learning procedures. Test results are directly applied to estimate examinee's ability and are used to modify the item parameters and the difficulties of learning content objects during the learning procedure is being operated. We define the learning unit 'Node' as an amount of learning objects operated so that new parameters can be re-estimated. There are various content objects in a Node and the parameters estimated at the end of current Node are directly applied to the next Node. We offer the most appropriate learning Node for a person's ability throughout the estimation processes of IRT. As a result, this scheme improves learning efficiency in web-base e-Learning environments offering the most appropriate learning objects and items to the individual students according to their estimated abilities. This scheme can be applied to any e-Learning subject having homogeneous learning objects and unidimensional test items. In order to construct the system, we present an operation scenario using the proposed system architecture with the essential databases and agents.

Reinforcement Learning for Node-disjoint Path Problem in Wireless Ad-hoc Networks (무선 애드혹 네트워크에서 노드분리 경로문제를 위한 강화학습)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.1011-1017
    • /
    • 2019
  • This paper proposes reinforcement learning to solve the node-disjoint path problem which establishes multipath for reliable data transmission in wireless ad-hoc networks. The node-disjoint path problem is a problem of determining a plurality of paths so that the intermediate nodes do not overlap between the source and the destination. In this paper, we propose an optimization method considering transmission distance in a large-scale wireless ad-hoc network using Q-learning in reinforcement learning, one of machine learning. Especially, in order to solve the node-disjoint path problem in a large-scale wireless ad-hoc network, a large amount of computation is required, but the proposed reinforcement learning efficiently obtains appropriate results by learning the path. The performance of the proposed reinforcement learning is evaluated from the viewpoint of transmission distance to establish two node-disjoint paths. From the evaluation results, it showed better performance in the transmission distance compared with the conventional simulated annealing.

On the set up to the Number of Hidden Node of Adaptive Back Propagation Neural Network (적응 역전파 신경회로망의 은닉 층 노드 수 설정에 관한 연구)

  • Hong, Bong-Wha
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.55-67
    • /
    • 2002
  • This paper presents an adaptive back propagation algorithm that update the learning parameter by the generated error, adaptively and varies the number of hidden layer node. This algorithm is expected to escaping from the local minimum and make the best environment for convergence to be change the number of hidden layer node. On the simulation tested this algorithm on two learning pattern. One was exclusive-OR learning and the other was $7{\times}5$ dot alphabetic font learning. In both examples, the probability of becoming trapped in local minimum was reduce. Furthermore, in alphabetic font learning, the neural network enhanced to learning efficient about 41.56%~58.28% for the conventional back propagation. and HNAD(Hidden Node Adding and Deleting) algorithm.

  • PDF

A Motivation-Based Action-Selection-Mechanism Involving Reinforcement Learning

  • Lee, Sang-Hoon;Suh, Il-Hong;Kwon, Woo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.904-914
    • /
    • 2008
  • An action-selection-mechanism(ASM) has been proposed to work as a fully connected finite state machine to deal with sequential behaviors as well as to allow a state in the task program to migrate to any state in the task, in which a primitive node in association with a state and its transitional conditions can be easily inserted/deleted. Also, such a primitive node can be learned by a shortest path-finding-based reinforcement learning technique. Specifically, we define a behavioral motivation as having state-dependent value as a primitive node for action selection, and then sequentially construct a network of behavioral motivations in such a way that the value of a parent node is allowed to flow into a child node by a releasing mechanism. A vertical path in a network represents a behavioral sequence. Here, such a tree for our proposed ASM can be newly generated and/or updated whenever a new behavior sequence is learned. To show the validity of our proposed ASM, experimental results of a mobile robot performing the task of pushing- a- box-in to- a-goal(PBIG) will be illustrated.

Text-Independent Speaker Identification System Based On Vowel And Incremental Learning Neural Networks

  • Heo, Kwang-Seung;Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1042-1045
    • /
    • 2003
  • In this paper, we propose the speaker identification system that uses vowel that has speaker's characteristic. System is divided to speech feature extraction part and speaker identification part. Speech feature extraction part extracts speaker's feature. Voiced speech has the characteristic that divides speakers. For vowel extraction, formants are used in voiced speech through frequency analysis. Vowel-a that different formants is extracted in text. Pitch, formant, intensity, log area ratio, LP coefficients, cepstral coefficients are used by method to draw characteristic. The cpestral coefficients that show the best performance in speaker identification among several methods are used. Speaker identification part distinguishes speaker using Neural Network. 12 order cepstral coefficients are used learning input data. Neural Network's structure is MLP and learning algorithm is BP (Backpropagation). Hidden nodes and output nodes are incremented. The nodes in the incremental learning neural network are interconnected via weighted links and each node in a layer is generally connected to each node in the succeeding layer leaving the output node to provide output for the network. Though the vowel extract and incremental learning, the proposed system uses low learning data and reduces learning time and improves identification rate.

  • PDF

A self creating and organizing neural network (자기 분열 및 구조화 신경 회로망)

  • 최두일;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.768-772
    • /
    • 1991
  • The Self Creating and organizing (SCO) is a new architecture and one of the unsupervized learning algorithm for the artificial neural network. SCO begins with only one output node which has a sufficiently wide response range, and the response ranges of all the nodes decrease with time. Self Creating and Organizing Neural Network (SCONN) decides automatically whether adapting the weights of existing node or creating a new node. It is compared to the Kohonen's Self Organizing Feature Map (SOFM). The results show that SCONN has lots of advantages over other competitive learning architecture.

  • PDF

A Modified Error Function to Improve the Error Back-Propagation Algorithm for Multi-Layer Perceptrons

  • Oh, Sang-Hoon;Lee, Young-Jik
    • ETRI Journal
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 1995
  • This paper proposes a modified error function to improve the error back-propagation (EBP) algorithm for multi-Layer perceptrons (MLPs) which suffers from slow learning speed. It can also suppress over-specialization for training patterns that occurs in an algorithm based on a cross-entropy cost function which markedly reduces learning time. In the similar way as the cross-entropy function, our new function accelerates the learning speed of the EBP algorithm by allowing the output node of the MLP to generate a strong error signal when the output node is far from the desired value. Moreover, it prevents the overspecialization of learning for training patterns by letting the output node, whose value is close to the desired value, generate a weak error signal. In a simulation study to classify handwritten digits in the CEDAR [1] database, the proposed method attained 100% correct classification for the training patterns after only 50 sweeps of learning, while the original EBP attained only 98.8% after 500 sweeps. Also, our method shows mean-squared error of 0.627 for the test patterns, which is superior to the error 0.667 in the cross-entropy method. These results demonstrate that our new method excels others in learning speed as well as in generalization.

  • PDF

A Self Creating and Organizing Neural Network (자기 분열 및 구조화 신경회로망)

  • 최두일;박상희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.533-540
    • /
    • 1992
  • The Self Creating and Organizing (SCO) is a new architecture and one of the unsupervized learning algorithm for the artificial neural network. SCO begins with only one output node which has a sufficiently wide response range, and the response ranges of all the nodes decrease automatically whether adapting the weights of existing node or creating a new node. It is compared to the Kohonen's Self Organizing Feature Map (SOFM). The results show that SCONN has lots of advantages over other competitive learning architecture.

  • PDF

Use of artificial intelligence in the management of T1 colorectal cancer: a new tool in the arsenal or is deep learning out of its depth?

  • James Weiquan Li;Lai Mun Wang;Katsuro Ichimasa;Kenneth Weicong Lin;James Chi-Yong Ngu;Tiing Leong Ang
    • Clinical Endoscopy
    • /
    • v.57 no.1
    • /
    • pp.24-35
    • /
    • 2024
  • The field of artificial intelligence is rapidly evolving, and there has been an interest in its use to predict the risk of lymph node metastasis in T1 colorectal cancer. Accurately predicting lymph node invasion may result in fewer patients undergoing unnecessary surgeries; conversely, inadequate assessments will result in suboptimal oncological outcomes. This narrative review aims to summarize the current literature on deep learning for predicting the probability of lymph node metastasis in T1 colorectal cancer, highlighting areas of potential application and barriers that may limit its generalizability and clinical utility.

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.