• Title/Summary/Keyword: Learning Efficiency

Search Result 1,420, Processing Time 0.034 seconds

Classification of Fall Crops Using Unmanned Aerial Vehicle Based Image and Support Vector Machine Model - Focusing on Idam-ri, Goesan-gun, Chungcheongbuk-do - (무인기 기반 영상과 SVM 모델을 이용한 가을수확 작물 분류 - 충북 괴산군 이담리 지역을 중심으로 -)

  • Jeong, Chan-Hee;Go, Seung-Hwan;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.1
    • /
    • pp.57-69
    • /
    • 2022
  • Crop classification is very important for estimating crop yield and figuring out accurate cultivation area. The purpose of this study is to classify crops harvested in fall in Idam-ri, Goesan-gun, Chungcheongbuk-do by using unmanned aerial vehicle (UAV) images and support vector machine (SVM) model. The study proceeded in the order of image acquisition, variable extraction, model building, and evaluation. First, RGB and multispectral image were acquired on September 13, 2021. Independent variables which were applied to Farm-Map, consisted gray level co-occurrence matrix (GLCM)-based texture characteristics by using RGB images, and multispectral reflectance data. The crop classification model was built using texture characteristics and reflectance data, and finally, accuracy evaluation was performed using the error matrix. As a result of the study, the classification model consisted of four types to compare the classification accuracy according to the combination of independent variables. The result of four types of model analysis, recursive feature elimination (RFE) model showed the highest accuracy with an overall accuracy (OA) of 88.64%, Kappa coefficient of 0.84. UAV-based RGB and multispectral images effectively classified cabbage, rice and soybean when the SVM model was applied. The results of this study provided capacity usefully in classifying crops using single-period images. These technologies are expected to improve the accuracy and efficiency of crop cultivation area surveys by supplementing additional data learning, and to provide basic data for estimating crop yields.

Evaluation of Rainfall Erosivity Factor Estimation Using Machine and Deep Learning Models (머신러닝 및 딥러닝을 활용한 강우침식능인자 예측 평가)

  • Lee, Jimin;Lee, Seoro;Lee, Gwanjae;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.450-450
    • /
    • 2021
  • 기후변화 보고서에 따르면 집중 호우의 강도 및 빈도 증가가 향후 몇 년동안 지속될 것이라 제시하였다. 이러한 집중호우가 빈번히 발생하게 된다면 강우 침식성이 증가하여 표토 침식에 더 취약하게 발생된다. Universal Soil Loss Equation (USLE) 입력 매개 변수 중 하나인 강우침식능인자는 토양 유실을 예측할때 강우 강도의 미치는 영향을 제시하는 인자이다. 선행 연구에서 USLE 방법을 사용하여 강우침식능인자를 산정하였지만, 60분 단위 강우자료를 이용하였기 때문에 정확한 30분 최대 강우강도 산정을 고려하지 못하는 한계점이 있다. 본 연구의 목적은 강우침식능인자를 이전의 진행된 방법보다 더 빠르고 정확하게 예측하는 머신러닝 모델을 개발하며, 총 월별 강우량, 최대 일 강우량 및 최대 시간별 강우량 데이터만 있어도 산정이 가능하도록 하였다. 이를 위해 본 연구에서는 강우침식능인자의 산정 값의 정확도를 높이기 위해 1분 간격 강우 데이터를 사용하며, 최근 강우 패턴을 반영하기 위해서 2013-2019년 자료로 이용했다. 우선, 월별 특성을 파악하기 위해 USLE 계산 방법을 사용하여 월별 강우침식능인자를 산정하였고, 국내 50개 지점을 대상으로 계산된 월별 강우침식능인자를 실측 값으로 정하여, 머신러닝 모델을 통하여 강우침식능인자 예측하도록 학습시켜 분석하였다. 이 연구에 사용된 머신러닝 모델들은 Decision Tree, Random Forest, K-Nearest Neighbors, Gradient Boosting, eXtreme Gradient Boost 및 Deep Neural Network을 이용하였다. 또한, 교차 검증을 통해서 모델 중 Deep Neural Network이 강우침식능인자 예측 정확도가 가장 높게 산정하였다. Deep Neural Network은 Nash-Sutcliffe Efficiency (NSE) 와 Coefficient of determination (R2)의 결과값이 0.87로서 모델의 예측성을 입증하였으며, 검증 모델을 테스트 하기 위해 국내 6개 지점을 무작위로 선별하여 강우침식능인자를 분석하였다. 본 연구 결과에서 나온 Deep Neural Network을 이용하면, 훨씬 적은 노력과 시간으로 원하는 지점에서 월별 강우침식능인자를 예측할 수 있으며, 한국 강우 패턴을 효율적으로 분석 할 수 있을 것이라 판단된다. 이를 통해 향후 토양 침식 위험을 지표화하는 것뿐만 아니라 토양 보전 계획을 수립할 수 있으며, 위험 지역을 우선적으로 선별하고 제시하는데 유용하게 사용 될 것이라 사료된다.

  • PDF

A Study on the Preference and Efficiency of Block-Base Programming and Text-based Programming (블록 기반 프로그래밍과 텍스트 기반 프로그래밍의 선호도와 효율에 관한 연구)

  • Jeon, Hyun-mo;Kim, Eui-Jeong;Chung, Jong-In;Kim, Chang Suk;Kang, Shin-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.486-489
    • /
    • 2021
  • The purpose of this study was to investigate whether block-based programming language, which is currently being used in elementary and secondary schools, attracts students' interest and motivates them to learn. In addition, this study was to investigate how block-based programming language can help students improve their computing thinking ability and have a good effect on learning text-based programming to learn in high school. In addition, this study tried to study the direction of education linked with artificial intelligence and programming, which are popular in the era of the Fourth Industrial Revolution. The interest in software education has increased so much that software and information education from elementary school to high school has achieved quantitative and qualitative growth that can not be compared with before. However, in the field of artificial intelligence, discussions have begun, but we can not say that we have yet established ourselves in our education. We will discuss how block-based programming and text-based programming will be combined with artificial intelligence and educated.

  • PDF

Artificial Intelligence in Gastric Cancer Imaging With Emphasis on Diagnostic Imaging and Body Morphometry

  • Kyung Won Kim;Jimi Huh ;Bushra Urooj ;Jeongjin Lee ;Jinseok Lee ;In-Seob Lee ;Hyesun Park ;Seongwon Na ;Yousun Ko
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.388-399
    • /
    • 2023
  • Gastric cancer remains a significant global health concern, coercing the need for advancements in imaging techniques for ensuring accurate diagnosis and effective treatment planning. Artificial intelligence (AI) has emerged as a potent tool for gastric-cancer imaging, particularly for diagnostic imaging and body morphometry. This review article offers a comprehensive overview of the recent developments and applications of AI in gastric cancer imaging. We investigated the role of AI imaging in gastric cancer diagnosis and staging, showcasing its potential to enhance the accuracy and efficiency of these crucial aspects of patient management. Additionally, we explored the application of AI body morphometry specifically for assessing the clinical impact of gastrectomy. This aspect of AI utilization holds significant promise for understanding postoperative changes and optimizing patient outcomes. Furthermore, we examine the current state of AI techniques for the prognosis of patients with gastric cancer. These prognostic models leverage AI algorithms to predict long-term survival outcomes and assist clinicians in making informed treatment decisions. However, the implementation of AI techniques for gastric cancer imaging has several limitations. As AI continues to evolve, we hope to witness the translation of cutting-edge technologies into routine clinical practice, ultimately improving patient care and outcomes in the fight against gastric cancer.

Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system

  • Aman Kumar;Harish Chandra Arora;Nishant Raj Kapoor;Denise-Penelope N. Kontoni;Krishna Kumar;Hashem Jahangir;Bharat Bhushan
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.119-138
    • /
    • 2023
  • Concrete carbonation is a prevalent phenomenon that leads to steel reinforcement corrosion in reinforced concrete (RC) structures, thereby decreasing their service life as well as durability. The process of carbonation results in a lower pH level of concrete, resulting in an acidic environment with a pH value below 12. This acidic environment initiates and accelerates the corrosion of steel reinforcement in concrete, rendering it more susceptible to damage and ultimately weakening the overall structural integrity of the RC system. Lower pH values might cause damage to the protective coating of steel, also known as the passive film, thus speeding up the process of corrosion. It is essential to estimate the carbonation factor to reduce the deterioration in concrete structures. A lot of work has gone into developing a carbonation model that is precise and efficient that takes both internal and external factors into account. This study presents an ML-based adaptive-neuro fuzzy inference system (ANFIS) approach to predict the carbonation depth of fly ash (FA)-based concrete structures. Cement content, FA, water-cement ratio, relative humidity, duration, and CO2 level have been used as input parameters to develop the ANFIS model. Six performance indices have been used for finding the accuracy of the developed model and two analytical models. The outcome of the ANFIS model has also been compared with the other models used in this study. The prediction results show that the ANFIS model outperforms analytical models with R-value, MAE, RMSE, and Nash-Sutcliffe efficiency index values of 0.9951, 0.7255 mm, 1.2346 mm, and 0.9957, respectively. Surface plots and sensitivity analysis have also been performed to identify the repercussion of individual features on the carbonation depth of FA-based concrete structures. The developed ANFIS-based model is simple, easy to use, and cost-effective with good accuracy as compared to existing models.

Topic-oriented Liberal English Class Plan for Foreign Learners at University (대학생 외국인 학습자를 위한 주제 중심의 교양 영어 수업방안)

  • Kim Hye-Jeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.111-117
    • /
    • 2023
  • The aim of this study is to present a practical teaching plan for liberal arts English classes that target foreign students. Foreign learners who do not have Korean language proficiency at the university level may struggle to understand the contents of liberal arts classes conducted by Korean language professors. In this study, six topics were selected (K-culture, Online game, Harry Potter, Disney, Marvel, DC) and topic-centered participatory class activities using various media were developed. A questionnaire was conducted to analyze learners' attitudes toward and perceptions regarding topic-oriented classes. It showed that learners' satisfaction with topic-based classes was high (75%), and the reasons for this high level of satisfaction were the instructors' caring attitudes, the comfortable class atmosphere, and the fun learners had in class. Learners also reported high satisfaction with various participatory class activities (81.9%), citing the learning benefits, their increased interest and motivation, and the efficiency of participatory classes. As globalization continues to increase the number of foreign students in South Korea, the need to develop realistic class plans and various class activities that are suitable for them is becoming more and more urgent.

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

A Study on the Short-circuit Protection System for Learning Teaching Instruction Using Incandescent Light Bulb (백열전구를 이용한 학습 교구용 단락보호장치에 대한 고찰)

  • Hong-yong Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.844-850
    • /
    • 2023
  • Purpose: This paper is about the development of a short-circuit protection power supply device using incandescent bulbs and its application for educational materials. This article, which considers electrical safety and energy conservation at the same time, has many kinds of potential applications for both educational and industrial areas. The above mentioned short-circuit protection power supply device using incandescent bulbs enhances safety and efficiency compared to normal current power supply devices. Additionally, as an educational materials, it can be used for electric safety training, and provides practical electrical safety knowledge on our actual life. Method: Using incandescent bulbs, design new type of short-circuit protection power supply device, and through verifying the function and safety of the device, make new type device, and applying it for an educational tool. Conclusion: This study is to develop new type of power supply device, and verify the possibility of the application for the device as an educational materials. Through this research, show an innovative solution, which contribute to electrical safety and energy conservation, and open the potential possibility on educational and industrial sectors.This kind of research is expected to contributes to enhanced research, and education on electrical safety and energy conservation management.

A Study on Software and Artificial Intelligence Education Camp Operation (소프트웨어와 인공지능 교육캠프 운영에 관한 연구)

  • Keun-Ho Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.4
    • /
    • pp.71-75
    • /
    • 2023
  • Changes in modern society are resulting in the emergence of various service models that apply software and artificial intelligence, and all fields are rapidly changing based on software and artificial intelligence. Education on software and artificial intelligence is emerging as a major influencing factor that determines national competitiveness. Following these social changes, interest in the use of software and artificial intelligence is quite high. Starting in 2025, software and artificial intelligence-related curricula are scheduled to be introduced into public education in elementary, middle, and high schools, so many educational activities are becoming active. In this study, based on the content of operating the software and artificial intelligence experience activity program, we would like to propose the efficiency of future learning programs and operating methods for software and artificial intelligence.