• Title/Summary/Keyword: Learning Control Algorithm

Search Result 944, Processing Time 0.026 seconds

Clinicoradiological Characteristics in the Differential Diagnosis of Follicular-Patterned Lesions of the Thyroid: A Multicenter Cohort Study

  • Jeong Hoon Lee;Eun Ju Ha;Da Hyun Lee;Miran Han;Jung Hyun Park;Ji-hoon Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.763-772
    • /
    • 2022
  • Objective: Preoperative differential diagnosis of follicular-patterned lesions is challenging. This multicenter cohort study investigated the clinicoradiological characteristics relevant to the differential diagnosis of such lesions. Materials and Methods: From June to September 2015, 4787 thyroid nodules (≥ 1.0 cm) with a final diagnosis of benign follicular nodule (BN, n = 4461), follicular adenoma (FA, n = 136), follicular carcinoma (FC, n = 62), or follicular variant of papillary thyroid carcinoma (FVPTC, n = 128) collected from 26 institutions were analyzed. The clinicoradiological characteristics of the lesions were compared among the different histological types using multivariable logistic regression analyses. The relative importance of the characteristics that distinguished histological types was determined using a random forest algorithm. Results: Compared to BN (as the control group), the distinguishing features of follicular-patterned neoplasms (FA, FC, and FVPTC) were patient's age (odds ratio [OR], 0.969 per 1-year increase), lesion diameter (OR, 1.054 per 1-mm increase), presence of solid composition (OR, 2.255), presence of hypoechogenicity (OR, 2.181), and presence of halo (OR, 1.761) (all p < 0.05). Compared to FA (as the control), FC differed with respect to lesion diameter (OR, 1.040 per 1-mm increase) and rim calcifications (OR, 17.054), while FVPTC differed with respect to patient age (OR, 0.966 per 1-year increase), lesion diameter (OR, 0.975 per 1-mm increase), macrocalcifications (OR, 3.647), and non-smooth margins (OR, 2.538) (all p < 0.05). The five important features for the differential diagnosis of follicular-patterned neoplasms (FA, FC, and FVPTC) from BN are maximal lesion diameter, composition, echogenicity, orientation, and patient's age. The most important features distinguishing FC and FVPTC from FA are rim calcifications and macrocalcifications, respectively. Conclusion: Although follicular-patterned lesions have overlapping clinical and radiological features, the distinguishing features identified in our large clinical cohort may provide valuable information for preoperative distinction between them and decision-making regarding their management.

Developing a Neural-Based Credit Evaluation System with Noisy Data (불량 데이타를 포함한 신경망 신용 평가 시스템의 개발)

  • Kim, Jeong-Won;Choi, Jong-Uk;Choi, Hong-Yun;Chuong, Yoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.2
    • /
    • pp.225-236
    • /
    • 1994
  • Many research result conducted by neural network researchers claimed that the degree of generalization of the neural network system is higher or at least equal to that of statistical methods. However, those successful results could be brought only if the neural network was trained by appropriately sound data, having a little of noisy data and being large enough to control noisy data. Real data used in a lot of fields, especially business fields, were not so sound that the network have frequently failed to obtain satisfactory prediction accuracy, the degree of generalization. Enhancing the degree of generalization with noisy data is discussed in this study. The suggestion, which was obtained through a series of experiments, to enhance the degree of generalization is to remove inconsistent data by checking overlapping and inconsistencies. Furthermore, the previous conclusion by other reports is also confirmed that the learning mechanism of neural network takes average value of two inconsistent data included in training set[2]. The interim results of on-going research project are reported in this paper These are ann architecture of the neural network adopted in this project and the whole idea of developing on-line credit evaluation system,being intergration of the expert(resoning)system and the neural network(learning system.Another definite result is corroborated through this study that quickprop,being agopted as a learing algorithm, also has more speedy learning process than does back propagation even in very noisy environment.

  • PDF

Improved Performance of Image Semantic Segmentation using NASNet (NASNet을 이용한 이미지 시맨틱 분할 성능 개선)

  • Kim, Hyoung Seok;Yoo, Kee-Youn;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.274-282
    • /
    • 2019
  • In recent years, big data analysis has been expanded to include automatic control through reinforcement learning as well as prediction through modeling. Research on the utilization of image data is actively carried out in various industrial fields such as chemical, manufacturing, agriculture, and bio-industry. In this paper, we applied NASNet, which is an AutoML reinforced learning algorithm, to DeepU-Net neural network that modified U-Net to improve image semantic segmentation performance. We used BRATS2015 MRI data for performance verification. Simulation results show that DeepU-Net has more performance than the U-Net neural network. In order to improve the image segmentation performance, remove dropouts that are typically applied to neural networks, when the number of kernels and filters obtained through reinforcement learning in DeepU-Net was selected as a hyperparameter of neural network. The results show that the training accuracy is 0.5% and the verification accuracy is 0.3% better than DeepU-Net. The results of this study can be applied to various fields such as MRI brain imaging diagnosis, thermal imaging camera abnormality diagnosis, Nondestructive inspection diagnosis, chemical leakage monitoring, and monitoring forest fire through CCTV.

Non-face-to-face online home training application study using deep learning-based image processing technique and standard exercise program (딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구)

  • Shin, Youn-ji;Lee, Hyun-ju;Kim, Jun-hee;Kwon, Da-young;Lee, Seon-ae;Choo, Yun-jin;Park, Ji-hye;Jung, Ja-hyun;Lee, Hyoung-suk;Kim, Joon-ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.577-582
    • /
    • 2021
  • Recently, with the development of AR, VR, and smart device technologies, the demand for services based on non-face-to-face environments is also increasing in the fitness industry. The non-face-to-face online home training service has the advantage of not being limited by time and place compared to the existing offline service. However, there are disadvantages including the absence of exercise equipment, difficulty in measuring the amount of exercise and chekcing whether the user maintains an accurate exercise posture or not. In this study, we develop a standard exercise program that can compensate for these shortcomings and propose a new non-face-to-face home training application by using a deep learning-based body posture estimation image processing algorithm. This application allows the user to directly watch and follow the trainer of the standard exercise program video, correct the user's own posture, and perform an accurate exercise. Furthermore, if the results of this study are customized according to their purpose, it will be possible to apply them to performances, films, club activities, and conferences

A Study on Biomass Estimation Technique of Invertebrate Grazers Using Multi-object Tracking Model Based on Deep Learning (딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구)

  • Bak, Suho;Kim, Heung-Min;Lee, Heeone;Han, Jeong-Ik;Kim, Tak-Young;Lim, Jae-Young;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • In this study, we propose a method to estimate the biomass of invertebrate grazers from the videos with underwater drones by using a multi-object tracking model based on deep learning. In order to detect invertebrate grazers by classes, we used YOLOv5 (You Only Look Once version 5). For biomass estimation we used DeepSORT (Deep Simple Online and real-time tracking). The performance of each model was evaluated on a workstation with a GPU accelerator. YOLOv5 averaged 0.9 or more mean Average Precision (mAP), and we confirmed it shows about 59 fps at 4 k resolution when using YOLOv5s model and DeepSORT algorithm. Applying the proposed method in the field, there was a tendency to be overestimated by about 28%, but it was confirmed that the level of error was low compared to the biomass estimation using object detection model only. A follow-up study is needed to improve the accuracy for the cases where frame images go out of focus continuously or underwater drones turn rapidly. However,should these issues be improved, it can be utilized in the production of decision support data in the field of invertebrate grazers control and monitoring in the future.

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.

An Energy Efficient Cluster Management Method based on Autonomous Learning in a Server Cluster Environment (서버 클러스터 환경에서 자율학습기반의 에너지 효율적인 클러스터 관리 기법)

  • Cho, Sungchul;Kwak, Hukeun;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.6
    • /
    • pp.185-196
    • /
    • 2015
  • Energy aware server clusters aim to reduce power consumption at maximum while keeping QoS(Quality of Service) compared to energy non-aware server clusters. They adjust the power mode of each server in a fixed or variable time interval to let only the minimum number of servers needed to handle current user requests ON. Previous studies on energy aware server cluster put efforts to reduce power consumption further or to keep QoS, but they do not consider energy efficiency well. In this paper, we propose an energy efficient cluster management based on autonomous learning for energy aware server clusters. Using parameters optimized through autonomous learning, our method adjusts server power mode to achieve maximum performance with respect to power consumption. Our method repeats the following procedure for adjusting the power modes of servers. Firstly, according to the current load and traffic pattern, it classifies current workload pattern type in a predetermined way. Secondly, it searches learning table to check whether learning has been performed for the classified workload pattern type in the past. If yes, it uses the already-stored parameters. Otherwise, it performs learning for the classified workload pattern type to find the best parameters in terms of energy efficiency and stores the optimized parameters. Thirdly, it adjusts server power mode with the parameters. We implemented the proposed method and performed experiments with a cluster of 16 servers using three different kinds of load patterns. Experimental results show that the proposed method is better than the existing methods in terms of energy efficiency: the numbers of good response per unit power consumed in the proposed method are 99.8%, 107.5% and 141.8% of those in the existing static method, 102.0%, 107.0% and 106.8% of those in the existing prediction method for banking load pattern, real load pattern, and virtual load pattern, respectively.

A Study on Parameters Estimation of Storage Function Model Using the Genetic Algorithms (유전자 알고리듬을 이용한 저류함수모형의 매개변수 추정에 관한 연구)

  • Park, Bong-Jin;Cha, Hyeong-Seon;Kim, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 1997
  • In this study, the applicability of genetic algorithms into the parameter estimation of storage function method for flood routing model is investigated. Genetic algorithm is mathematically established theory based on the process of Darwinian natural selection and survival of fittest. It can be represented as a kind of search algorithms for optima point in solution space and make a reach on optimal solutions through performance improvement of assumed model by applying the natural selection of life as mechanical learning province. Flood events recorded in the Daechung dam are selected and used for the parameter estimation and verification of the proposed parameter estimation method by the split sample method. The results are analyzed that the performance of the model are improved including peak discharge and time to peak and shown that the parameter Rsa, and f1 are most sensitive to storage function model. Based on the analysis for estimated parameters and the comparison with the results from experimental equations, the applicability of genetic algorithm is verified and the improvements of those equations will be used for the augmentation of flood control efficiency.

  • PDF

The Effect of High-Fidelity Simulation Practice Related with Classical Education of Medical Surgical Nursing (성인간호학 이론수업과 연계한 High-Fidelity 시뮬레이션 교육의 효과)

  • Chyn, Yeol-eo;Kim, Kyoung-Mi;Hwang, Hye-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8176-8186
    • /
    • 2015
  • This research was conducted for the purpose of developing a high-fidelity simulation education program, applying it to clinical field and analyzing this program's effect on nursing college students in order to solve problems being caused from the gap between the adult nursing theoretical class and practical education. As the analysis method, this study developed a scenario including an algorithm for caring hyperkalemia patients, the evaluation check list, and debriefing according to the adult nursing theoretical class's learning goal and measured the high-fidelity simulation program's effect in using the non-equivalent control group pre-test and post-test design. As the results from the analysis, there secured the simulation education program's general properties and dependent variable's homogeneity in the experimental group and the control group. The nursing simulation practice program for hyperkalemia patients showed slight effect on the experimental group compared to the control group in fields such as nursing practice ability, problem solving ability, critical thinking skills, self-confidence of nursing, and knowledge. (t=-83.313, p<.001, t=-3.169, p=.003, t=-2.473, p=.017, t=-4.036, p<.001, t=-5.044, p<.001). High-Fidelity simulation programs in conjunction with an adult nursing theory classes of nursing students nursing practice ability, problem solving ability, critical thinking skills, self-confidence of nursing, and knowledge. This simulation program may be an effective educational method for nursing practice and also support improved quality of nursing education.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.