• Title/Summary/Keyword: Learning Control Algorithm

Search Result 949, Processing Time 0.029 seconds

Collision Avoidance Sensor System for Mobile Crane (전지형 크레인의 인양물 충돌방지를 위한 환경탐지 센서 시스템 개발)

  • Kim, Ji-Chul;Kim, Young Jea;Kim, Mingeuk;Lee, Hanmin
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2022
  • Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver's vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.

Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice (면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용)

  • Cho, Jae-Hoon;Kim, Dong-Hwa;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.402-410
    • /
    • 2004
  • In this paper, an optimal design method of clonal selection based Fuzzy-Neural Networks (FNN) model for complex and nonlinear systems is presented. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. Also Advanced Clonal Selection (ACS) is proposed to find the parameters such as parameters of membership functions, learning rates and momentum coefficients. The proposed method is based on an Immune Algorithm (IA) using biological Immune System and The performance is improved by control of differentiation rate. Through that procedure, the antibodies are producted variously and the parameter of FNN are optimized by selecting method of antibody with the best affinity against antigens such as object function and limitation condition. To evaluate the performance of the proposed method, we use the time series data for gas furnace and traffic route choice process.

Recognition of Passports using Enhanced Neural Networks and Photo Authentication (개선된 신경망과 사진 인증을 이용한 여권 인식)

  • Kim Kwang-Baek;Park Hyun-Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.983-989
    • /
    • 2006
  • Current emigration and immigration control inspects passports by the naked eye, registers them by manual input, and compares them with items of database. In this paper, we propose the method to recognize information codes of passports. The proposed passport recognition method extracts character-rows of information codes by applying sobel operator, horizontal smearing, and contour tracking algorithm. The extracted letter-row regions is binarized. After a CDM mask is applied to them in order to recover the individual codes, the individual codes are extracted by applying vertical smearing. The recognizing of individual codes is performed by the RBF network whose hidden layer is applied by ART 2 algorithm and whose learning between the hidden layer and the output layer is applied by a generalized delta learning method. After a photo region is extracted from the reference of the starting point of the extracted character-rows of information codes, that region is verified by the information of luminance, edge, and hue. The verified photo region is certified by the classified features by the ART 2 algorithm. The comparing experiment with real passport images confirmed the good performance of the proposed method.

Learning based relay selection for reliable content distribution in smart class application

  • Kim, Taehong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2894-2909
    • /
    • 2015
  • As the number of mobile devices such as smart phones and tablets explodes, the need for new services or applications is also rapidly increasing. Smart class application is one of the emerging applications, in which most of contents are distributed to all members of a class simultaneously. It is highly required to select relay nodes to cover shadow area of radio as well as extend coverage, but existing algorithms in a smart class environment suffer from high control packet overhead and delay for exchanging topology information among all pairs of nodes to select relay nodes. In addition, the relay selection procedure should be repeated in order to adapt to the dynamic topology changes caused by link status changes or device's movement. This paper proposes the learning based relay selection algorithm to overcome aforementioned problems. The key idea is that every node keeps track of its relay quality in a fully distributed manner, where RQI (Relay Quality Indicator) is newly defined to measure both the ability of receiving packets from content source and the ability of successfully relaying them to successors. The RQI of each node is updated whenever it receives or relays broadcast packet, and the node having the higher RQI is selected as a relay node in a distributed and run-time manner. Thus, the proposed algorithm not only removes the overhead for obtaining prior knowledge to select relay nodes, but also provides the adaptability to the dynamic topology changes. The network simulation and experimental results prove that the proposed algorithm provides efficient and reliable content distribution to all members in a smart class as well adaptability against network dynamics.

A Study on the Design and Development of Robot Game-based Project for Teaching Children to Program Computers (프로그램교육 목적의 로봇게임 프로젝트 학습 구안에 관한 연구)

  • Shin, Seung-Young;You, Sang-Mi;Kim, Mi-Ryang
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.159-171
    • /
    • 2009
  • The objective of this research is to explore a method to utilize a programmable robot, as a potential learning tool in the elementary school's curricula. Due to their programmability and operational ease of use, programmable robots are among digital toys that today offer specially instructive features. In this research, we developed the robot game-based project contents as a tool for teaching the elementary school children to learn the algorithm, the essential part of computer programming. The LEGO material, selected as the construction kit for robot, consists of a mechanical assembly system, a set of sensors and actuators, a central control unit, a programming environment. The project requires the children to complete 3 separate tasks, each of which is developed based on the principles of algorithm. The classroom feedback supports that the robotic experiences provided the children with fun and absorption. It is likely that implementing learning with robot in regular classroom in elementary school can bring new possibilities to the educational system, provided that a thorough preparation backs up the plan.

  • PDF

Vowel Classification of Imagined Speech in an Electroencephalogram using the Deep Belief Network (Deep Belief Network를 이용한 뇌파의 음성 상상 모음 분류)

  • Lee, Tae-Ju;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.

Tunnel Ventilation Controller Design Employing RLS-Based Natural Actor-Critic Algorithm (RLS 기반의 Natural Actor-Critic 알고리즘을 이용한 터널 환기제어기 설계)

  • Chu B.;Kim D.;Hong D.;Park J.;Chung J.T.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.53-54
    • /
    • 2006
  • The main purpose of tunnel ventilation system is to maintain CO pollutant and VI (visibility index) under an adequate level to provide drivers with safe driving condition. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement teaming (RL) method. RL is a goal-directed teaming of a mapping from situations to actions. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. Constructing the reward of the tunnel ventilation system, two objectives listed above are included. RL algorithm based on actor-critic architecture and natural gradient method is adopted to the system. Also, the recursive least-squares (RLS) is employed to the learning process to improve the efficiency of the use of data. The simulation results performed with real data collected from existing tunnel are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  • PDF

Application of neural network for airship take-off and landing system by buoyancy change

  • Chang, Yong-Jin;Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.333-336
    • /
    • 2003
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn’t give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed.

  • PDF

Sensorless Vector Control of Induction Motor by Artificial Neural Network (인공 신경망에 의한 유도전동기의 센서리스 벡터제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.307-312
    • /
    • 2007
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of induction motor using FLC-FNN and estimation of speed using ANN controller The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

  • PDF

Maximum Torque Control of SynRM Drive with ALM-FNN Controller (ALM-FNN 제어기에 의한 SynRM 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.155-157
    • /
    • 2006
  • The paper is proposed maximum torque control of SynRM drive using adaptive learning mechanism-fuzzy neural network(ALM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF