• Title/Summary/Keyword: Learning Control Algorithm

Search Result 958, Processing Time 0.038 seconds

Flame Diagnosis Using Neuro-Fuzzy Learning Algorithm (뉴로퍼지학습 알고리듬을 이용한 연소상태진단)

  • Lee, Tae-Yeong;Kim, Seong-Hwan;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.587-595
    • /
    • 2002
  • Recent trend changes a criterion for evaluation of humors that environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the NO/sub x/ and CO regulation. Consequently, 'good burner'means one whose thermal efficiency is high under the constraint of NO/sub x/ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of NO/sub x/ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro-Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro-Fuzzy loaming algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of NO/sub x/ and CO of the combustion gas was successfully inferred.

A Defect Detection Algorithm of Denim Fabric Based on Cascading Feature Extraction Architecture

  • Shuangbao, Ma;Renchao, Zhang;Yujie, Dong;Yuhui, Feng;Guoqin, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.109-117
    • /
    • 2023
  • Defect detection is one of the key factors in fabric quality control. To improve the speed and accuracy of denim fabric defect detection, this paper proposes a defect detection algorithm based on cascading feature extraction architecture. Firstly, this paper extracts these weight parameters of the pre-trained VGG16 model on the large dataset ImageNet and uses its portability to train the defect detection classifier and the defect recognition classifier respectively. Secondly, retraining and adjusting partial weight parameters of the convolution layer were retrained and adjusted from of these two training models on the high-definition fabric defect dataset. The last step is merging these two models to get the defect detection algorithm based on cascading architecture. Then there are two comparative experiments between this improved defect detection algorithm and other feature extraction methods, such as VGG16, ResNet-50, and Xception. The results of experiments show that the defect detection accuracy of this defect detection algorithm can reach 94.3% and the speed is also increased by 1-3 percentage points.

Development of a New Prediction Alarm Algorithm Applicable to Pumped Storage Power Plant (양수발전 설비에 적용 가능한 새로운 고장 예측경보 알고리즘 개발)

  • Dae-Yeon Lee;Soo-Yong Park;Dong-Hyung Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.

Personalized Media Control Method using Probabilistic Fuzzy Rule-based Learning (확률적 퍼지 룰 기반 학습에 의한 개인화된 미디어 제어 방법)

  • Lee, Hyong-Euk;Kim, Yong-Hwi;Lee, Tae-Youb;Park, Kwang-Hyun;Kim, Yong-Soo;Cho, Joon-Myun;Bien, Z. Zenn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.244-251
    • /
    • 2007
  • Intention reading technique is essential to provide personalized services toward more convenient and human-friendly services in complex ubiquitous environment such as a smart home. If a system has knowledge about an user's intention of his/her behavioral pattern, the system can provide mote qualified and satisfactory services automatically in advance to the user's explicit command. In this sense, learning capability is considered as a key function for the intention reading technique in view of knowledge discovery. In this paper, ore introduce a personalized media control method for a possible application iii a smart home. Note that data pattern such as human behavior contains lots of inconsistent data due to limitation of feature extraction and insufficiently available features, where separable data groups are intermingled with inseparable data groups. To deal with such a data pattern, we introduce an effective engineering approach with the combination of fuzzy logic and probabilistic reasoning. The proposed learning system, which is based on IFCS (Iterative Fuzzy Clustering with Supervision) algorithm, extract probabilistic fuzzy rules effectively from the given numerical training data pattern. Furthermore, an extended architectural design methodology of the learning system incorporating with the IFCS algorithm are introduced. Finally, experimental results of the media contents recommendation system are given to show the effectiveness of the proposed system.

Efficiency Optimization Control of IPMSM with Adaptive FLC-FNN Controller (적응 FLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.74-82
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning control fuzzy neural network (AFLC-FNN) controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC-FNN controller. Also, this paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.

Maximum Torque Control of IPMSM Drive with ALM-FNN (ALM-FNN에 의한 IPMSM 드라이브의 최대토크 제어)

  • Lee, Jung-Ho;Choi, Jung-Sik;Ko, Jae-Sub;Kim, Jong-Kwan;Park, Byung-Sang;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.731-732
    • /
    • 2006
  • The paper is proposed maximum torque control of IPMSM drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and artificial neural network(ANN). For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the ALM-FNN and ANN.

  • PDF

Adaptive Feedrate Neuro-Control for High Precision and High Speed Machining (고정밀 고속가공을 위한 신경망 이송속도 적응제어)

  • Lee, Seung-Soo;Ha, Soo-Young;Jeon, Gi-Joon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.35-42
    • /
    • 1998
  • Finding a technique to achieve high machining precision and high productivity is an important issue for CNC machining. One of the solutions to meet better performance of machining is feedrate control. In this paper we present an adaptive feedrate neuro-control method for high precision and high speed machining. The adaptive neuro-control architecture consists of a neural network identifier(NNI) and an iterative learning control algorithm with inversion of the NNI. The NNI is an identifier for the nonlinear characteristics of feedrate and contour error, which is utilized in iterative learning for adaptive feedrate control with specified contour error tolerance. The proposed neuro-control method has been successfully evaluated for machining circular, corner and involute contours by computer simulations.

  • PDF

Feedback Shift Controller Design of Automatic Transmission for Tractors (트랙터 자동변속기 되먹임 변속 제어기 설계)

  • Jung, Gyu Hong;Jung, Chang Do;Park, Se Ha
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Nowadays automatic transmission equipped vehicles prevail in construction and agricultural equipment due to their convenience in driving and operation. Though domestic vehicle manufacturers install imported electronic controlled transmissions at present, overseas products will be replaced by domestic ones in the near future owing to development efforts over the past 10 years. For passenger cars, there are many kinds of shift control algorithms that enhance the shift quality such as feedback and learning control. However, since shift control technologies for heavy duty vehicles are not highly developed, it is possible to improve the shift quality with an organized control method. A feedback control algorithm for neutral-into-gear shift, which is enabled during the inertia phase for the master clutch slip speed to track the slip speed reference, is proposed based on the power transmission structure of TH100. The performance of the feedback shift control is verified by a vehicle test which is implemented with firmware embedded TCU. As the master clutch engages along the predetermined speed trajectory, it can be concluded that the shift quality can be managed by a shift time control parameter. By extending the proposed feedback algorithm for neutral-into-gear shift to gear change and shuttle shift, it is expected that the quality of the shift can be improved.

PID Learning Controller for Multivariable System with Dynamic Friction (동적 마찰이 있는 다변수 시스템에서의 PID 학습 제어)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.57-64
    • /
    • 2007
  • There have been many researches for optimal controllers in multivariable systems, and they generally use accurate linear models of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. Therefore, it is necessary a PID gain tuning method without explicit modeling for the multivariable plant dynamics. The PID tuning method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the error-related objective function. This paper, especially, focuses on the role of I-controller when there is a steady state error. However, it is not easy to tune I-gain unlike P- and D-gain because I-controller is mainly operated in the steady state. Simulations for an overhead crane system with dynamic friction show that the proposed PID-LC algorithm improves controller performance, even in the steady state error.

A study on Induction Motor Servo System using Self-learning Neural-Fuzzy Networks (자기학습형 뉴럴-퍼지 제어기에 의한 유도전동기 서어보시스템)

  • Yang, Seung-Ho;Kim, Se-Chan;Won, Chung-Yuen;Kim, Duk-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.142-144
    • /
    • 1993
  • In this study, a Self-learning Neural-Fuzzy Networks is presented, Because of the fuzzy controller property, the designing problems of fuzzy if-then rules, membership functions and inference methods are very complex task. Thus in this paper we proposed the Neural-Fuzzy Networks composed by Sugeno and Takagi's fuzzy inference method and learned by using temporal back propagation algorithm. The proposed method can refine automatically the fuzzy if-then rules without human expert's knowledges. The induction motor servo system is used to demonstrate the effectiveness of the proposed control scheme and the feasibility of the acquired fuzzy controller. All results are supported by simulation.

  • PDF