• 제목/요약/키워드: Learning Control Algorithm

검색결과 958건 처리시간 0.035초

자기 조정맵을 갖는 퍼지-뉴럴 제어기의 설계 (On design of the fuzzy neural controller with a self-organizing map)

  • 김성현;조현찬;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.408-411
    • /
    • 1993
  • In this paper, we propose the Fuzzy Neural Controller with a Self-Organizing Map based on the fuzzy relation neuron. The fuzzy ndes expressing the input-output relation of the system are obtained by using the fuzzy relation neuron and updated automatically by means of the generalized delta rule. Also, the proposed method has a capability to express the knowledge acquired from the input-output data in form of fuzzy inferences rules. The learning algorithm of this fuzzy relation neuron is described. The effectiveness of the proposed fuzzy neural controller is illustrated by applying it to a number of test data sets.

  • PDF

Design of improved Mulit-FNN for Nonlinear Process modeling

  • Park, Hosung;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.102.2-102
    • /
    • 2002
  • In this paper, the improved Multi-FNN (Fuzzy-Neural Networks) model is identified and optimized using HCM (Hard C-Means) clustering method and optimization algorithms. The proposed Multi-FNN is based on FNN and use simplified and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and genetic algorithms (GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parame...

  • PDF

Studies on image recognition of human sperms using a neural network

  • Kitamura, S.;Tanaka, K.;Kurematsu, Y.;Takeshima, M.;Iwahara, H.;Teraguchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1135-1139
    • /
    • 1989
  • Three layered neural network was applied for the pattern recognition problem of human spermatozoa in clinical test. The goodness of recognition rate was studied in relation to the number of hidden layer cells and of output layer cells. The proposed method provided better results than conventional template matching technique. Parallel processing of the back propagation learning algorithm was also studied using transputers and its performance was evaluated.

  • PDF

과도상태 성능 개선을 위한 적응 제어기 설계 (The Adaptation Controller Plan for a Transient State Efficiency Improvement)

  • 조현섭;전호익
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2011년도 춘계학술논문집 1부
    • /
    • pp.379-381
    • /
    • 2011
  • Dynamic Neural Unit(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

러프셋 이론을 이용한 신경망의 구조 최적화 (Structure Optimization of Neural Networks using Rough Set Theory)

  • 정영준;이동욱;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF

VSS-귀한 신경망을 이용한 로보트 매니퓰레이터 제어 (Control of Robot Manipulator using VSS-Recurrent Neural Networks)

  • 최영길;김성현;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.39-48
    • /
    • 1996
  • 비선형 동적 시스템을 제어하기에 적합한 귀환 신경망에 대한 연구는 안정성(stability) 유도와 학습 알고리듬(learning algorithm) 개발의 두가지 방향으로 지금까지 많은 연구가 이루어져 왔다. 본 논문에서는 비선형 동적 시스템 제어시 온라인(on-line) 학습이 가능하고 안정성을 보장하도록 귀환 신경망의 학습 알고리듬에 VSS이론을 도입하여 개발한다. 또한 개발한 학습 알고리듬을 사용한 귀환 신경망을 전형적인 비선형 동적 시스템인 로보트 매니퓰레이터의 제어 시스템에 적용하고 기존의 학습 방법의 적용 결과와 비교하여 개발한 제어 알고리듬의 효용성을 입증한다.

  • PDF

Fuzzy 연산 식을 이용한 형상식별 방법에 관한 연구 (A Study on a Method of Pattern Classification by Fuzzy Algorithm)

  • 김장복;김순협
    • 한국통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.49-53
    • /
    • 1980
  • Since Zadeh had published the fuzzy set theory at 1965, it has been applied to many fields such as realizability of communication nets, automatic control, learning systems, switching circuits. In this paper, the method of applying a fuzzy logic to a pattern classification is studied and the difference of fuzzy logic from Boolean algebra is discussed. Classfication experiment is carried out 16 persons' photos of three families by fourty male and female observers and recognition rate 94% is obtained.

  • PDF

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

적응 신경망을 이용한 동적 매니퓰레이터의 위치제어 설계 (A Desing of position controller for manipulator using Adaptive neural network)

  • 조현섭;유인호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1574-1575
    • /
    • 2007
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

An ANN-based gesture recognition algorithm for smart-home applications

  • Huu, Phat Nguyen;Minh, Quang Tran;The, Hoang Lai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.1967-1983
    • /
    • 2020
  • The goal of this paper is to analyze and build an algorithm to recognize hand gestures applying to smart home applications. The proposed algorithm uses image processing techniques combing with artificial neural network (ANN) approaches to help users interact with computers by common gestures. We use five types of gestures, namely those for Stop, Forward, Backward, Turn Left, and Turn Right. Users will control devices through a camera connected to computers. The algorithm will analyze gestures and take actions to perform appropriate action according to users requests via their gestures. The results show that the average accuracy of proposal algorithm is 92.6 percent for images and more than 91 percent for video, which both satisfy performance requirements for real-world application, specifically for smart home services. The processing time is approximately 0.098 second with 10 frames/sec datasets. However, accuracy rate still depends on the number of training images (video) and their resolution.