• Title/Summary/Keyword: Learning Control Algorithm

Search Result 947, Processing Time 0.038 seconds

Artificial intelligence (AI) based analysis for global warming mitigations of non-carbon emitted nuclear energy productions

  • Tae Ho Woo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4282-4286
    • /
    • 2023
  • Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme Using Actor-Critic Reinforcement Learning Algorithm

  • Shen, Si;Shen, Guojiang;Shen, Yang;Liu, Duanyang;Yang, Xi;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4268-4289
    • /
    • 2020
  • Advanced traffic signal timing method plays very important role in reducing road congestion and air pollution. Reinforcement learning is considered as superior approach to build traffic light timing scheme by many recent studies. It fulfills real adaptive control by the means of taking real-time traffic information as state, and adjusting traffic light scheme as action. However, existing works behave inefficient in complex intersections and they are lack of feasibility because most of them adopt traffic light scheme whose phase sequence is flexible. To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy optimization and generalized advantage estimation are integrated. In particular, a new kind of reward function and a simplified form of state representation are carefully defined, and they facilitate to improve the learning efficiency and reduce the computational complexity, respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on the variations of successive phase durations is introduced, which enhances its feasibility and robustness in field applications. The proposed scheme is verified through field-data-based experiments in both medium and high traffic density scenarios. Simulation results exhibit remarkable improvement in traffic performance as well as the learning efficiency comparing with the existing reinforcement learning-based methods such as 3DQN and DDQN.

Neighborhood Sequential Training Technique for CMAC (CMAC을 위한 이웃간訓鍊 方法)

  • 권성규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1816-1823
    • /
    • 1992
  • In order to develop general CMAC training technique applicable to any CMAC, characteristics of CMAC learning algorithm and training problems of CMAC are studied. Neighborhood Sequential Training technique which is general and free fro CMAC learning interference is proposed. The technique is used to generate mathematical functions and found to be effective.

A study of global minimization analaysis of Langevine competitive learning neural network based on constraction condition and its application to recognition for the handwritten numeral (축합조건의 분석을 통한 Langevine 경쟁 학습 신경회로망의 대역 최소화 근사 해석과 필기체 숫자 인식에 관한 연구)

  • 석진욱;조성원;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.466-469
    • /
    • 1996
  • In this paper, we present the global minimization condition by an informal analysis of the Langevine competitive learning neural network. From the viewpoint of the stochastic process, it is important that competitive learning guarantees an optimal solution for pattern recognition. By analysis of the Fokker-Plank equation for the proposed neural network, we show that if an energy function has a special pseudo-convexity, Langevine competitive learning can find the global minima. Experimental results for pattern recognition of handwritten numeral data indicate the superiority of the proposed algorithm.

  • PDF

Text-Independent Speaker Identification System Based On Vowel And Incremental Learning Neural Networks

  • Heo, Kwang-Seung;Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1042-1045
    • /
    • 2003
  • In this paper, we propose the speaker identification system that uses vowel that has speaker's characteristic. System is divided to speech feature extraction part and speaker identification part. Speech feature extraction part extracts speaker's feature. Voiced speech has the characteristic that divides speakers. For vowel extraction, formants are used in voiced speech through frequency analysis. Vowel-a that different formants is extracted in text. Pitch, formant, intensity, log area ratio, LP coefficients, cepstral coefficients are used by method to draw characteristic. The cpestral coefficients that show the best performance in speaker identification among several methods are used. Speaker identification part distinguishes speaker using Neural Network. 12 order cepstral coefficients are used learning input data. Neural Network's structure is MLP and learning algorithm is BP (Backpropagation). Hidden nodes and output nodes are incremented. The nodes in the incremental learning neural network are interconnected via weighted links and each node in a layer is generally connected to each node in the succeeding layer leaving the output node to provide output for the network. Though the vowel extract and incremental learning, the proposed system uses low learning data and reduces learning time and improves identification rate.

  • PDF

An Efficient Method to Determine the Phase Current Commands of SR Motors for Minimum Torque Ripples (SR 모터의 토크리플을 최소화하는 상전류명령 결정 방법)

  • Kim, Chang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.78-89
    • /
    • 2012
  • The generated torque of a switched reluctance(SR) motor is highly nonlinear, which makes it difficult to determine the reference current commands for minimum torque ripples. In this paper, we present a computationally simple and efficient method to minimize torque ripples of SR motors based on iterative learning control. The reference current command of each phase minimizing torque ripples is identified in 2-dimensional look-up table form. Our learning control algorithm does not require the torque model, so our method is not affected by model errors and hence is very accurate. In order to justify our work, we present some computer simulation results.

The application of machine learning for the prognostics and health management of control element drive system

  • Oluwasegun, Adebena;Jung, Jae-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2262-2273
    • /
    • 2020
  • Digital twin technology can provide significant value for the prognostics and health management (PHM) of critical plant components by improving insight into system design and operating conditions. Digital twinning of systems can be utilized for anomaly detection, diagnosis and the estimation of the system's remaining useful life in order to optimize operations and maintenance processes in a nuclear plant. In this regard, a conceptual framework for the application of digital twin technology for the prognosis of Control Element Drive Mechanism (CEDM), and a data-driven approach to anomaly detection using coil current profile are presented in this study. Health management of plant components can capitalize on the data and signals that are already recorded as part of the monitored parameters of the plant's instrumentation and control systems. This work is focused on the development of machine learning algorithm and workflow for the analysis of the CEDM using the recorded coil current data. The workflow involves features extraction from the coil-current profile and consequently performing both clustering and classification algorithms. This approach provides an opportunity for health monitoring in support of condition-based predictive maintenance optimization and in the development of the CEDM digital twin model for improved plant safety and availability.

An Adaptive PID Controller Design based on a Gradient Descent Learning (경사 감소 학습에 기초한 적응 PID 제어기 설계)

  • Park Jin-Hyun;Kim Hyun-Duck;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.276-282
    • /
    • 2006
  • PID controller has been widely used in industry. Because it has a simple structure and robustness to modeling error. But it is difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose an adaptive PID controller based on a gradient descent learning. This algorithm has a simple structure like conventional PID controller and a robustness to system parameters variation and different velocity command. To verify performances of the proposed adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

UAV-based bridge crack discovery via deep learning and tensor voting

  • Xiong Peng;Bingxu Duan;Kun Zhou;Xingu Zhong;Qianxi Li;Chao Zhao
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.105-118
    • /
    • 2024
  • In order to realize tiny bridge crack discovery by UAV-based machine vision, a novel method combining deep learning and tensor voting is proposed. Firstly, the grid images of crack are detected and descripted based on SE-ResNet50 to generate feature points. Then, the probability significance map of crack image is calculated by tensor voting with feature points, which can define the direction and region of crack. Further, the crack detection anchor box is formed by non-maximum suppression from the probability significance map, which can improve the robustness of tiny crack detection. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method in the Xiangjiang-River bridge inspection. Compared with the original tensor voting algorithm, the proposed method has higher accuracy in the situation of only 1-2 pixels width crack and the existence of edge blur, crack discontinuity, which is suitable for UAV-based bridge crack discovery.