• 제목/요약/키워드: Learning Control Algorithm

검색결과 947건 처리시간 0.039초

자율주행 제어를 위한 향상된 주변환경 인식 알고리즘 (Improved Environment Recognition Algorithms for Autonomous Vehicle Control)

  • 배인환;김영후;김태경;오민호;주현수;김슬기;신관준;윤선재;이채진;임용섭;최경호
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

Back Propagation 알고리즘을 이용한 산업용 로봇의 견실 제어 (Robust Control of Industrial Robot Based on Back Propagation Algorithm)

  • 윤주식;이희섭;윤대식;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.253-257
    • /
    • 2004
  • Neural networks are works are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division(corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

ALM-FNN 제어기에 의한 SynRM의 효율 최적화 제어 (Efficiency Optimization Control of SynRM with ALM -FNN Controller)

  • 최정식;고재섭;김길봉;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.47-49
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism-fuzzy neural networks(ALM-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

ALM-FNN 제어기를 이용한 SynRM의 효율 최적화 제어 (Efficiency optimization control of SynRM using ALM-FNN controller)

  • 박병상;박기태;고재섭;최정식;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.306-310
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism-fuzzy neural networks(ALM-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF

IRPO 기반 Actor-Critic 학습 기법을 이용한 로봇이동 (Robot locomotion via IRPO based Actor-Critic Learning Method)

  • 김종호;강대성;박주영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2933-2935
    • /
    • 2005
  • The IRPO(Intensive Randomized Policy Optimizer) algorithm is a recently developed tool in the area of reinforcement leaming. And it has been shown to be very successful in several application problems. To compare with a general RL method, IRPO has some difference in that policy utilizes the entire history of agent -environment interaction. The policy is derived from the history directly, not through any kind of a model of the environment. In this paper, we consider a robot-control problem utilizing a IRPO algorithm. We also developed a MATLAH-based animation program, by which the effectiveness of the training algorithms were observed.

  • PDF

무모형 로봇을 위한 신경 회로망 제어 방식 (A non-model based robot manipulator control using neural networks)

  • 정슬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.698-701
    • /
    • 1996
  • A novel neural network control scheme is proposed to identify the inverse dynamic model of robot manipulator and to compensate for uncertainties in robot dynamics. The proposed controller is called reference compensation technique(RCT) by compensating at reference input trajectory. The proposed RCT scheme has many benefits due to the differences in compensating position and learning algorithm. Since the compensation is done outside the plant it can be applied to many control systems without modifying the inside controller. It performs well with low controller gain because the operating range of input values is small and the output of the neural network controller is amplified through the controller gain. The back-propagation algorithm is used to train and simulations of three link robot manipulator are carried out to prove the proposed controller's performances.

  • PDF

유연 관절 매니퓰레이터의 자기 구성 퍼지 제어 (Self-Organizing Fuzzy Control of a Flexible Joint Manipulator)

  • Park, J.H.;Lee, S.B.
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.92-98
    • /
    • 1995
  • The position control of flexible joint manipulator is investigated by applying the self-organizing fuzzy logic controller (SOC) proposed by Procyk and Mamdani. The SOC is a heuristic rule-based controller and a further extension of an ordinary fuzzy controller, which has a hierachy structrue which consists of an algorithm being identical to a fuzzy controller at the lower ollp and a learning algorithm accomodating the performance evalution and rule modification function at the upper ollp. This form of control can be used in those complex systems which have been too difficult to control or which in the past have had to rely on the experience of a human operator. Even though the significant dynamic coupling of the motors and links on the flexible joint manipulator, the performance of command-following is good by applying the proposed SOC.

  • PDF

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part II: Simulation Study)

  • Nguyen Phung-Hung;Jung Yun-Chul
    • 한국항해항만학회지
    • /
    • 제30권2호
    • /
    • pp.119-124
    • /
    • 2006
  • In Part I(theoretical study) of the paper, a new adaptive autopilot for ships based on Adaptive Neural Networks was proposed. The ANNAI autopilot was designed for course-keeping, turning and track-keeping control for ships. In this part of the paper, to show the effectiveness and feasibility of the ANNAI autopilot and automatic selection algorithm for learning rate and number of iterations, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented. Additionally, the results of the previous studies using Adaptive Neural Network by backpropagation algorithm are also showed for comparison.

IPMSM 드라이브의 효율최적화를 위한 인공지능 제어기 개발 (Development of Artificial Intelligent Controller for Efficiency Optimization of IPMSM Drive)

  • 최정식;고재섭;박병상;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1007-1008
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for IPMSM which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy learning control-fuzzy neural networks(AFLC-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the AFLC-FNN controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF

PoN 분산합의 알고리즘 탈중앙화 분석 및 제어 모델 설계 (Decentralization Analysis and Control Model Design for PoN Distributed Consensus Algorithm)

  • 최진영;김영창;오진태;김기영
    • 산업경영시스템학회지
    • /
    • 제45권1호
    • /
    • pp.1-9
    • /
    • 2022
  • The PoN (Proof of Nonce) distributed consensus algorithm basically uses a non-competitive consensus method that can guarantee an equal opportunity for all nodes to participate in the block generation process, and this method was expected to resolve the first trilemma of the blockchain, called the decentralization problem. However, the decentralization performance of the PoN distributed consensus algorithm can be greatly affected by the network transaction transmission delay characteristics of the nodes composing the block chain system. In particular, in the consensus process, differences in network node performance may significantly affect the composition of the congress and committee on a first-come, first-served basis. Therefore, in this paper, we presented a problem by analyzing the decentralization performance of the PoN distributed consensus algorithm, and suggested a fairness control algorithm using a learning-based probabilistic acceptance rule to improve it. In addition, we verified the superiority of the proposed algorithm by conducting a numerical experiment, while considering the block chain systems composed of various heterogeneous characteristic systems with different network transmission delay.