• Title/Summary/Keyword: Learning Control Algorithm

Search Result 949, Processing Time 0.028 seconds

A variance learning neural network for confidence estimation (신뢰도 추정을 위한 분산 학습 신경 회로망)

  • 조영빈;권대갑;이경래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1173-1176
    • /
    • 1996
  • Multilayer feedforward networks may be applied to identify the deterministic relationship between input and output data. When the results from the network require a high level of assurance, considering of the stochastic relationship between the data may be very important. The variance is one of the useful parameters to represent the stochastic relationship. This paper presents a new algorithm for a multilayer feedforward network to learn the variance of dispersed data without preliminary calculation of variance. In this paper, the network with this learning algorithm is named as a variance learning neural network(VALEAN). Computer simulation examples are utilized for the demonstration and the evaluation of VALEAN.

  • PDF

Fuzzy Inference-based Reinforcement Learning of Dynamic Recurrent Neural Networks

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.60-66
    • /
    • 1997
  • This paper presents a fuzzy inference-based reinforcement learning algorithm of dynamci recurrent neural networks, which is very similar to the psychological learning method of higher animals. By useing the fuzzy inference technique the linguistic and concetional expressions have an effect on the controller's action indirectly, which is shown in human's behavior. The intervlas of fuzzy membership functions are found optimally by genetic algorithms. And using recurrent neural networks composed of dynamic neurons as action-generation networks, past state as well as current state is considered to make an action in dynamical environment. We show the validity of the proposed learning algorithm by applying it to the inverted pendulum control problem.

  • PDF

A Hybrid RBF Network based on Fuzzy Dynamic Learning Rate Control (퍼지 동적 학습률 제어 기반 하이브리드 RBF 네트워크)

  • Kim, Kwang-Baek;Park, Choong-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.33-38
    • /
    • 2014
  • The FCM based hybrid RBF network is a heterogeneous learning network model that applies FCM algorithm between input and middle layer and applies Max_Min algorithm between middle layer and output. The Max-Min neural network uses winner nodes of the middle layer as input but shows inefficient learning in performance when the input vector consists of too many patterns. To overcome this problem, we propose a dynamic learning rate control based on fuzzy logic. The proposed method first classifies accurate/inaccurate class with respect to the difference between target value and output value with threshold and then fuzzy membership function and fuzzy decision logic is designed to control the learning rate dynamically. We apply this proposed RBF network to the character recognition problem and the efficacy of the proposed method is verified in the experiment.

A Study on the Load Frequency Control of 2-Area Power System using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 2지역 계통의 부하주파수제어에 관한연구)

  • Chung, Hyeng-Hwan;Kim, Sang-Hyo;Joo, Seok-Min;Lee, Jeong-Phil;Lee, Dong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • This paper proposes the structure and the algorithm of the Fuzzy-Neural Controller(FNNC) which is able to adapt itself to unknown plant and the change of circumstances at the Fuzzy Logic Controller(FLC) with the Neural Network. This Learning Fuzzy Logic Controller is made up of Fuzzy Logic controller in charge of a main role and Neural Network of an adaptation in variable circumstances. This construct optimal fuzzy controller applied to the 2-area load frequency control of power system, and then it would examine fitness about parameter variation of plant or variation of circumstances. And it proposes the optimal Scale factor method wsint three preformance functions( E, , U) of system dynamics of load frequency control with error back-propagation learning algorithm. Applying the controller to the model of load frequency control, it is shown that the FNNC method has better rapidity for load disturbance, reduces load frequency maximum deviation and tie line power flow deviation and minimizes reaching and settling time compared to the Optimal Fuzzy Logic Controller(OFLC) and the Optimal Control for optimzation of performance index in past control techniques.

  • PDF

Intelligent Switching Control of a Pneumatic Artificial Muscle Robot using Learning Vector Quantization Neural Network (학습벡터양자화 뉴럴네트워크를 이용한 공압 인공 근육 로봇의 지능 스위칭 제어)

  • Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.82-90
    • /
    • 2009
  • Pneumatic cylinder is one of the low cost actuation sources which have been applied in industrial and prosthetic application since it has a high power/weight ratio, a high-tension force and a long durability However, the control problems of pneumatic systems, oscillatory motion and compliance, have prevented their widespread use in advanced robotics. To overcome these shortcomings, a number of newer pneumatic actuators have been developed such as McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle (PAM) Manipulators. In this paper, one solution for position control of a robot arm, which is driven by two pneumatic artificial muscles, is presented. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external load of the robot arm. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is proposed in this paper. This estimates the external load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external working loads.

Deep Reinforcement Learning-Based C-V2X Distributed Congestion Control for Real-Time Vehicle Density Response (실시간 차량 밀도에 대응하는 심층강화학습 기반 C-V2X 분산혼잡제어)

  • Byeong Cheol Jeon;Woo Yoel Yang;Han-Shin Jo
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.379-385
    • /
    • 2023
  • Distributed congestion control (DCC) is a technology that mitigates channel congestion and improves communication performance in high-density vehicular networks. Traditional DCC techniques operate to reduce channel congestion without considering quality of service (QoS) requirements. Such design of DCC algorithms can lead to excessive DCC actions, potentially degrading other aspects of QoS. To address this issue, we propose a deep reinforcement learning-based QoS-adaptive DCC algorithm. The simulation was conducted using a quasi-real environment simulator, generating dynamic vehicular densities for evaluation. The simulation results indicate that our proposed DCC algorithm achieves results closer to the targeted QoS compared to existing DCC algorithms.

Butter-Worth analog filter parameter estimation using the genetic algorithm (유전자 알고리듬을 이용한 Butter-Worth 아날로그 필터의 파라미터 추정)

  • Son, Jun-Hyeok;Seo, So-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2513-2515
    • /
    • 2005
  • Recently genetic algorithm techniques have widely used in adaptive and control schemes for production systems. However, generally it costs a lot of time for leaming in the case applied in control system. Furthermore, the physical meaning of genetic algorithm constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a genetic algorithm used for identification of the process dynamics of Butter-Worth analog filter and it was shown that this method offered superior capability over the genetic algorithm. A genetic algorithm is used to solve the parameter identification problem for linear and nonlinear digital filters. This paper goal estimate Butter-Worth analog filter parameter using the genetic algorithm.

  • PDF

Robot Control via RPO-based Reinforcement Learning Algorithm (RPO 기반 강화학습 알고리즘을 이용한 로봇제어)

  • Kim, Jong-Ho;Kang, Dae-Sung;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.505-510
    • /
    • 2005
  • The RPO(randomized policy optimizer) algorithm, which utilizes probabilistic policy for the action selection, is a recently developed tool in the area of reinforcement learning, and has been shown to be very successful in several application problems. In this paper, we propose a modified RPO algorithm, whose critic network is adapted via RLS(Recursive Least Square) algorithm. In order to illustrate the applicability of the modified RPO method, we applied the modified algorithm to Kimura's robot and observed very good performance. We also developed a MATLAB-based animation program, by which the effectiveness of the training algorithms on the acceleration or the robot movement were observed.

A Study on Intelligent Control of Real-Time Working Motion Generation of Bipped Robot (2족 보행로봇의 실시간 작업동작 생성을 위한 지능제어에 관한 연구)

  • Kim, Min-Seong;Jo, Sang-Young;Koo, Young-Mok;Jeong, Yang-Gun;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we propose a new learning control scheme for various walk motion control of biped robot with same learning-base by neural network. We show that learning control algorithm based on the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multi layer back propagation neural network identification is simulated to obtain a dynamic model of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The biped robots have been received increased attention due to several properties such as its human like mobility and the high-order dynamic equation. These properties enable the biped robots to perform the dangerous works instead of human beings. Thus, the stable walking control of the biped robots is a fundamentally hot issue and has been studied by many researchers. However, legged locomotion, it is difficult to control the biped robots. Besides, unlike the robot manipulator, the biped robot has an uncontrollable degree of freedom playing a dominant role for the stability of their locomotion in the biped robot dynamics. From the simulation and experiments the reliability of iterative learning control was illustrated.

A Study on Position Control of the Direct Drive Robot Using Neural Networks (신경회로망을 이용한 직접 구동형 로봇의 위치제어에 관한 연구)

  • 신춘식;황용연;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.284-292
    • /
    • 1997
  • This paper is concerned with position control of direct drive robots. The proposed algorithm consists of the feedback controller and neural networks. Mter the completion of learning, the output of the feedback controller is nearly equal to zero, and the neural networks play an important role in the control system. Therefore, the optimum retuning of control parameters is unnecessary. In other words, the proposed algorithm does not need any knowledge of the con¬trolled system in advance. The effectiveness of the proposed algorithm is demonstrated by the experiment on the position control of a parallelogram link-type direct drive robot.

  • PDF