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ABSTRACT

This paper presents a fuzzy inference-based reinforcement learning algorithm of dynamic recurrent
neural networks, which is very similar to the psychological learning method of higher animals. By us-
ing the fuzzy inference technique the linguistic and conceptional expressions have an effect on the
controller's action indirectly, which is shown in human's behavior. The intervals of fuzzy membership
functions are found optimally by genetic algorithms. And using recurrent neural networks composed of
dynamic neurons as action-generation networks, past state as well as current state is considered to make
an action in dynamical environment. We show the validity of the proposed learning algorithm by ap-
plying it to the inverted pendulum control problem.

1. Introduction

Although the term of reinforcement comes from
studies of higher animal learning in the experimental
psychology, recently it becomes fascinating in the en-
gineering especially as an artificial neural network's
learning algorithm in the artificial intclligence.

In general, the machine learning can be classified
into two categories, which are supervised and un-
supervised learning, by whether the teaching signal is
needed or not. In supervised learning, teaching sig-
nals from the exact modeling of the environment are
needed. On the other hand, in reinforcement learning
the exact model is not required, so generally it be-
longs to unsupervised learning algorithm. And its ob-
jective is finding the state-action rule or action gen-
erating strategy maximizing reward for the controller
or agent's action under dynamically changing en-
vironment.

But as is often the case with real world, there is no
immediate reinforcement until a goal state is reached.
This requires improving long-term conse-quences of
an action or of a strategy for performing actions, in
addition to short-term consequences. This problem is
known as temporal credit assignment problem. A

widely studied approach to this problem is to learn
an internal evaluation function that is more in-
formative than the evaluation function implemented
by the external critic. The representative methods to
this problem are actor-critic architecture by Sutton's
temporal difference(TD) method[1] and Watkin's Q-
learning(2].

In actor-critic architecture, the critic assigns the
temporal credit or blame as internal reinforcement us-
ing states and external reinforcement. This internal
reinforcement is used for the learning of the action
network. The critic network is trained by TD-method,
and its output is set by the expected discounted sum

of future reinforcement as follows[3]:

p(=E {3 Hr (1+k)

n
=Y o (t)yx ) (1)
k=) i=1
where y is a discounting factor, r{f) is the rein-
forcement received at time f, x{r) is an input measure,
and w(r) is a connection weight. Because the correct
predictions must satisfy a consistency condition re-
lating predictions at adjacent time steps, the weight
update equation is derived from the TD error back-
propagation learning rule:
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ao()=n[r()+yp(t+D)-p(1)]x(t) @

where 1] is learning constant.

But it is a difficulty in TD-method that p(t+1)
should be calculated using axt+1), not axr). In other
words, the reinforcement in TD-method has been
predicted by the approximation under the con-
sumption of Markovian environment[4].

And OQ-learning needs discrete state and action
space so that the large state and action space problem
occur. Futhermore it can not cope with continuous
state and action problems{5][6].

In this paper, therefore, we propose a fuzzy inf-
erence-based reinforcement learning(FIRL) algorithm
of dynamic recurrent neural networks. It is thought
that human can learn unexpericnced task by his rea-
soning and adaption ability. He does an action just
by perceiving the states and then think whether his
action is proper or not. After that he estimate how
much or less action needed. By doing that, he can
act more properly on the next state. In this process,
linguistic and conceptional expressions have an effect
on his action indirectly. And from the state-reward re-
lations he can reinforce or inhibit his action to a cer-
tain situation. This is the reason we use the fuzzy inf-
erence as an evaluation function.

In our algorithm, the environment does not need to
be modeled. Just by sensing the input states and out-
the
namically changing, even though violating the Mar-

puts agent or controller can adapt the dy-
kov properties, environment. The overview of our
learning algorithm is illustrated in Fig. 1{7].

In section 2, fuzzy inference as critic for evalu-
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Fig. 1. Block diagram of FIRL

ation of states and actions is discussed and in section
3, the leaming algorithm for the dynamic recurrent
neural networks made up of associative search units is
explained. And then we evaluate the proposed al-
gorithm by applying it to the nonlinear control problem
in section 4, then conclusion and discussion follow.

2. Fuzzy Inference

2.1 Generating Reinforcement Signal

In this section, we show the internal reinforcement
generating method by fuzzy inference engine. Gen-
erally feedforward neural networks are used to gen-
erate the internal reinforcement in actor-critic ar-
chitecture. But we introduce the fuzzy inference en-
gine as critic, whose input variables are composed of
state variables, the output of the action network and
external reinforcement. And internal reinforcement
will be its output.

In fuzzy logic, there are three types of fuzzy rea-
soning, the first is Mamdani's minimum fuzzy im-
plication rule, the second is Tsukamoto's method
with linguistic terms as monotonic membership func-
tions, and the third is that the consequent of a rule is
a function of input linguistic variables[8].

In this paper, we use Mamdani's fuzzy implication
rule, that is max-min compositional rule of inference.
The rules are expressed qualitatively and linguist-
ically by fuzzy IF-THEN rules. If there are m input
variables, single output and n fuzzy rules, then gen-
eral fuzzy production rule is as follows:

R :IFx,is Ay, X, ISA;,
THEN y is B,

s X IS A,',,,
&)

Then using the notation of fuzzy relation R, e-
quation (3) can be rewritten as

R=R\ Ry UR=UR “)
i=1

where R=(A 4 XA oX -+ XA, )XB.

Generally the antecedent xi(k=1,---, m) is measured

. : 0
as a crisp value x,”. If we have the current inputs x,’,

xs", -, x,”, the consequent B"(,) can be expressed by

fuzzy relation R such that

BY'(y)=R(x{.x¥, )

T -xntl)» v )
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Fig. 2. An example of center of area defuzzification method

Therefore reasoning value y is as follows:

3=V [an B ()]

O, =A (xP)N A (xRN - N A, (xR) - (6)

And using the center of area defuzzification
method, the final inferred consequent y, is given
by

LB oy

)
[B°(y)dy

Fig. 2 shows an example of the center of area de-
fuzzification method when there are two antecedents.

2.2 Self-Partitioning Membership Function by
Genetic Algorithm
As shown in Fig. 3, we use the normalized memb-
ership function partitioned with five terms. And the
shape of each term is triangular except the two mar- ’
ginal terms. Proper fuzzy partitioning of input and
NL

NS ZE

PS PL

Cwe

(] ne] ma] newe Jwz [ws [wa Jws [ws [wr [ws!
Fig. 3. Membership function and encoding scheme
NL: Negative Large, NS: Negative Smal, ZE: Zero,
PS: Positive Small. PL: Positive Large
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output spaces plays an essential role in achieving a
successful fuzzy logic inference engine design. But
unfortunately, it is not deterministic and has no
unique solution. So we use the Genetic Algorithms
(GA) to find the optimal partitions[9]. GA proposed
by Hollands in 1975 is one of the derivative-free sto-
chastic optimization methods based on the concepts
of natural selection and evolutionary processes.

To apply GA to a problem, at first the solution
spaces should be represented by the chromosome.
For our case, the encoding method is illustrated in
Fig. 3. The triangular membership function's shape is
determined by the three points that are a center point
and left/right width points. We assume that the NL
and PL terms have fixed center points and the other
three center points could be placed any position from
-1 to 1 and all the left/right width of each terms
could be from 0 to the maximum value from its cent-
er point to the margin.

For a variable the chromosome is consist of 12 bits
real-valued string, where the first 4 bits represent the
width proportion between the neighbor center points
and the last 8 bits represent the width ratio of each
term's left and right margin from its center point. For
example, w; representing NS term's right width ratio
is current right width(wd;) over its possible max-
imum width(2-C,,). If there are N terms, N; input
variables and N, output variables, then the whole
length of one chromosome becomes 3 X (N-1) X (N+
N,) bits.

This encoding method guarantee the completeness,
soundness, and nonredundancy between the solution
and the genotype spaces. And using the simple GA
process, we can obtain the optimally partitioned
membership functions.

3. Stochastic Neuron and Dynamic Re-
current Neural Networks

3.1 Associative Search Unit

Associative search unit was proposed by Klopf as
a neuron used in an associative reinforcement learn-
ing scheme[1]. Basically this is an extension of the
Hebbian correlation learning rule, where the output is
a random variable depending on the activation level
to exhibit variety in its behavior.
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S ()= w () (1)

w; (t):i —th weight vector

x;(t):i—th input vector ®)
Then the output is as follows:

1 with p(t)
y ()= {0 with 1-p (1) ©)

where p(7) is an increasing probability function of s(r)
ranging from 0 to 1. If critic takes time 7 to evaluate
an action, then the weight update equation becomes

Aw(t)=n - r(t) -

where 71 is a learning constant, 7 is the delayed

y(-1) - x(t-1) (10)

time and r(?) is the reinforcement at time .

In the next section, we construct dynamic recurrent
neural networks with this associative search unit, and
derive the weights update rule.

3.2 Dynamic Recurrent Neural Network

Dynarnic recurrent neural network(DRNN) has int-
And
DRNN deals with input data nonlinearly, so it shows

ernal state feedback and self-feedback loops.

dynamic characteristic and is useful to the problem

having sequential data. The structure of fully con-

nected recurrent neural networks is shown in Fig. 4,

made up of asymmetrically interconnected neurons.
The output of the i-th neuron is

yi()=f(h (t=1))+A ()

hi(1)= [ZM,‘Y}(’)*‘%‘(‘)]
J

(1)

where hft-1) is the net-input to th i-th neuron at
time #-1, x{f) is an external input at time ¢ and f( - )
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S
=
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Fig. 4. Dynamic recurrent neural networks

External inputs
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is a nonlinear derivative activation function:
e

2X 0
1+exp (— Uy

And A(o) is a gaussian random number with O

f(x)= (12)

mean and o as a standard deviation. This standard de-
viation is set properly as a function of reinforcement
signal r whit a proportional constant ¢ as expressed
in equation (13). The constant ¢ controls the degree
of random search and plays an important role in es-
caping local minimum.

d r>0
yr
o= 1 r=1 a3)
aZIrI r<0

Then the total cost function to be minimized is

E()=53 (Em) (14)
k

(l—r(t)> oy (1), r(1)20

E(1)= (15)

(r(t)—l) oy (1), r(1)<0

Equation (15) is an appropriate error measure for
the output node & using the reinforcement r(f) created
by fuzzy inference. By the gradient-descent method,
the change in weights is

3
Wpq Wpq

(16)

The last derivative in equation (16) can be found
by differentiating the dynamical rule in equation (11).

aVk([)
OWng

dy; (1-1)
S, va(t—1)+>w, -~
(:kp q ; kj ()W

=f(h(1-1))

amn

Pq

where Jy, is kronecker delta function.

Consequently, from equation (10), (11), (15), (16)
and (17) the weight changes to be applied to each
weight @,, in the networks is
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Awpg (1)=1 - r(t) - ZEk(t)' 24 (1) (18)
%

ay, (1)
ow

rq
all appropriate indices j and &.

where z,(f) £ for every time step ¢ and

This DRNN composed of associative search unit is
used as action network and its weights are updated
by the equation (18) using reinforcement generated
by fuzzy inference engine.

4. Computer Simulation

We verify the effectiveness of the proposed learn-
ing algorithm by applying it to the inverted pen-
dulum control simulation. It is assumed that the
mathematical model of the system is not known to
the control system, and the plant is treated as a black
box, but the states of the system are available at in-
stants of time. And it is also assumed that the al-
lowed range of the cart position x and the pole's in-
clination angle 6 are -2.5 m<x<2.5m and -12°< <
12°, respectively. The objective is to keep the pole
balanced while the cart is constrained to move in a
prescribed range.

To generate internal reinforcement for the action net-
works, as shown in Fig. 5, three dimensional fuzzy
rule base is constructed. If membership functions are
partitioned into five terms(NL, NS, ZE, PS, PL) and
there are n preconditions, then the maximum number
of IF-THEN rule is 5" In this simulation we made 63
fuzzy rules using two states of inverted pendulum(8
and 6 ) and action network's output(F) as preconditions
and internal reinforcement r as a consequent.

We simulated two different cases, one is sta-
bilization control only with regular type membership
functions and the other is both stabilization and po-

AG NL | NS| ZE| PS|{ PL

NL[ NL PL

NS ZE PL

ZE PL

[ PL ZE

PLIPL NL
NL NS ZE PS PL e F'.‘,-_;"‘L )

Fig. 5. Fuzzy rule base
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Fig. 6. Course of learning

sition control with self- partitioned membership func-
tions. For the first case, the regular type membership
functions mean that five terms are separated un-
iformly with 25% overlapping. If the values of one
or more variables are out of the allowed range,
FAILURE is given as external reinforcement, and
then that trial is terminated.

The simulation result is illustrated in Fig. 6. We plott-
ed the survival number, that is the number of sustaining
pole vertically within the allowed region, versus trial
number. This result means that the action networks are a-
dapting unknown environment by on-line leamning.

In order to find self-partitioned membership func-
tions, as mentioned in section 2.2, each input and out-
put variables should be expressed as genotype. We
found the control parameters of GA heuristically:

- Number of population : 50

- Crossover probability : 0.85

- Mutation probability : (.02

- Maximum number of generation : 100

In order to ensure the character preservingness we
used multi-point crossover method. The appropriate
fitness measure is the sum of survival number and
the reciprocal value of position deviation. About the
position control, we used the same rule base which is
prepared for stabilization control without any ad-
ditional fuzzy rule. And we set the weighted rein-
forcement as

r()=B-ro(1)+(1=p)-ro (1) (19)

where [ is weighting constant, re(t) is rein-
forcement for the stabilization and r(f) is rcin-
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Fig. 7. Membership functions after self-partitioning

forcement for the position control.
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Fig. 7 shows the membership function and best chro-
mosome found by GA. For the simple representation we
calculated only down to two places of decimals.

Fig. 8 shows the performance comparison of reg-
type with the
function(Fig. 7). The solid line is the survival numb-

ular self-partitioned membership
er change versus trial number when the self-par-
titioned membership functions are used. As shown in
Fig. 8, the solid line stays above 1200 steps, that
means the time of keeping the pole balanced is 24
seconds or more, in contrast to the dotted line. Fig. 9
shows the cart position converges toward zero for the
different initial positions without additional fuzzy inf-
erence rules for position control.

5. Conclusions

In this paper, a reinforcement learning algorithm
for dynamic recurrent neural networks has been pro-
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posed. The proposed method is unsupervised and on-
line learning algorithm, in which the fuzzy inference
engine is combined as a critic of the neural networks.
And we showed how the fuzzy membership functions
are encoded into genotype for self-partitioning by GA.
The proposed learning algorithm basically mim-
icked human's reasoning and adapting capability, so
it is model free and robust to the unexpected noise.
The simulation results show the controller can adapt
and leamn the dynamically changing environment
without any prior knowledge of the environment.
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