• 제목/요약/키워드: Learning Control Algorithm

검색결과 947건 처리시간 0.023초

설비시스템을 위한 자기동조기법에 의한 학습 FUZZY 제어기 설계 (Design of Learning Fuzzy Controller by the Self-Tuning Algorithm for Equipment Systems)

  • 이승
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권6호
    • /
    • pp.71-77
    • /
    • 1995
  • This paper deals with design method of learning fuzzy controller for control of an unknown nonlinear plant using the self-tuning algorithm of fuzzy inference rules. In this method the fuzzy identification model obtained that the joined identification model of nonlinear part and linear identification model of linear part by fuzzy inference systems. This fuzzy identification model ordered self-tuning by Decent method so as to be servile to nonlinear plant. A the end, designed learning fuzzy controller of fuzzy identification model have learning structure to model reference adaptive system. The simulation results show that th suggested identification and learning control schemes are practically feasible and effective.

  • PDF

패턴분류에서 학습방법 개선 (Improvement of learning method in pattern classification)

  • 김명찬;최종호
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.594-601
    • /
    • 1997
  • A new algorithm is proposed for training the multilayer perceptrion(MLP) in pattern classification problems to accelerate the learning speed. It is shown that the sigmoid activation function of the output node can have deterimental effect on the performance of learning. To overcome this detrimental effect and to use the information fully in supervised learning, an objective function for binary modes is proposed. This objective function is composed with two new output activation functions which are selectively used depending on desired values of training patterns. The effect of the objective function is analyzed and a training algorithm is proposed based on this. Its performance is tested in several examples. Simulation results show that the performance of the proposed method is better than that of the conventional error back propagation (EBP) method.

  • PDF

PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어 (Real-Time Control of DC Sevo Motor with Variable Load Using PID-Learning Controller)

  • 김상훈;정인석;강영호;남문현;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권3호
    • /
    • pp.107-113
    • /
    • 2001
  • This paper deals with speed control of DC servo motor using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm. Conventionally a PID controller has been used in the industrial control. But a PID controller should produce suitable parameters for each system. Also, variables of the PID controller should be changed according to environments, disturbances and loads. In this paper described by a experiment that contained a method using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm, we developed speed characteristics of a DC servo motor on variable loads. The parameters of the controller are determined by neural network performed on on-line system after training the neural network on off-line system.

  • PDF

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.

유연 로봇 매니퓰레이터의 자동 구축 퍼지 적응 제어기 설계 (Design of an Automatic constructed Fuzzy Adaptive Controller(ACFAC) for the Flexible Manipulator)

  • 이기성;조현철
    • 한국지능시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.106-116
    • /
    • 1998
  • 유연 로봇 매니퓰레이터의 위치 제어 알고리즘에 대한 연구를 하였다. 제안하는 알고리즘은 신경회로망의 학습 알고리즘에 근거한 자동 구축 퍼지 적응 제어기(ACFAC : Automaitc Constructed Fuzzy Adaptive controller)에 기본으로 한다. 제안하는 시스템은 비지도 경쟁 학습 알고리즘을 사용하여 입력 변수의 멤버십 함수와 지도 Outstar 학습 알고리즘을 사용하여 출력 정보를 학습시킨다. ACFAC는 유연 로봇 매니퓰레이터의 동력한 모델을 필요로 하지 않는다. ACFAC는 유연 로봇 매니퓰레이터의 끝점이 원하는 궤적을 따라가도록 설계되었다. 이 제어기의 입력은 위치 오차, 위치 오차의 미분 값과 오차의 variation에 의해 결정된다. ACFAC의 우수서을 보여주기 우해서 PID 제어나 신경회로망 알고리즘을 사용한 결과와 비교를 하였다.

  • PDF

Maximum Torque Control of an IPMSM Drive Using an Adaptive Learning Fuzzy-Neural Network

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.468-476
    • /
    • 2012
  • The interior permanent magnet synchronous motor (IPMSM) has been widely used in electric vehicle applications due to its excellent power to weigh ratio. This paper proposes the maximum torque control of an IPMSM drive using an adaptive learning (AL) fuzzy neural network (FNN) and an artificial neural network (ANN). This control method is applicable over the entire speed range while taking into consideration the limits of the inverter's rated current and voltage. This maximum torque control is an executed control through an optimal d-axis current that is calculated according to the operating conditions. This paper proposes a novel technique for the high performance speed control of an IPMSM using AL-FNN and ANN. The AL-FNN is a control algorithm that is a combination of adaptive control and a FNN. This control algorithm has a powerful numerical processing capability and a high adaptability. In addition, this paper proposes the speed control of an IPMSM using an AL-FNN, the estimation of speed using an ANN and a maximum torque control using the optimal d-axis current according to the operating conditions. The proposed control algorithm is applied to an IPMSM drive system. This paper demonstrates the validity of the proposed algorithms through result analysis based on experiments under various operating conditions.

The Application of Industrial Inspection of LED

  • 왕숙;정길도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.91-93
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

A Deep Learning-Based Rate Control for HEVC Intra Coding

  • Marzuki, Ismail;Sim, Donggyu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.180-181
    • /
    • 2019
  • This paper proposes a rate control algorithm for intra coding frame in HEVC encoder using a deep learning approach. The proposed algorithm is designed for CTU level bit allocation in intra frame by considering visual features spatially and temporally. Our features are generated using visual geometry group (VGG-16) with deep convolutional layers, then it is used for bit allocation per each CTU within an intra frame. According to our experiments, the proposed algorithm can achieve -2.04% Luma component BD-rate gain with minimal bit accuracy loss against the HM-16.20 rate control model.

  • PDF

2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계 (Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

퍼지추론 및 뉴럴네트워크 기반 2휠구동 로봇의 주행제어알고리즘 개발 (Development of Travelling Control Algorithm Based Fuzzy Perception and Neural Network for Two Wheel Driving Robot)

  • 강언욱;양준석;차보남;박인수
    • 한국산업융합학회 논문집
    • /
    • 제17권2호
    • /
    • pp.69-76
    • /
    • 2014
  • This paper proposes a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.