• 제목/요약/키워드: Learning Algorithms

검색결과 2,317건 처리시간 0.034초

URL Filtering by Using Machine Learning

  • Saqib, Malik Najmus
    • International Journal of Computer Science & Network Security
    • /
    • 제22권8호
    • /
    • pp.275-279
    • /
    • 2022
  • The growth of technology nowadays has made many things easy for humans. These things are from everyday small task to more complex tasks. Such growth also comes with the illegal activities that are perform by using technology. These illegal activities can simple as displaying annoying message to big frauds. The easiest way for the attacker to perform such activities is to convenience user to click on the malicious link. It has been a great concern since a decay to classify URLs as malicious or benign. The blacklist has been used initially for that purpose and is it being used nowadays. It is efficient but has a drawback to update blacklist automatically. So, this method is replace by classification of URLs based on machine learning algorithms. In this paper we have use four machine learning classification algorithms to classify URLs as malicious or benign. These algorithms are support vector machine, random forest, n-nearest neighbor, and decision tree. The dataset that is used in this research has 36694 instances. A comparison of precision accuracy and recall values are shown for dataset with and without preprocessing.

Harvest Forecasting Improvement Using Federated Learning and Ensemble Model

  • Ohnmar Khin;Jin Gwang Koh;Sung Keun Lee
    • 스마트미디어저널
    • /
    • 제12권10호
    • /
    • pp.9-18
    • /
    • 2023
  • Harvest forecasting is the great demand of multiple aspects like temperature, rain, environment, and their relations. The existing study investigates the climate conditions and aids the cultivators to know the harvest yields before planting in farms. The proposed study uses federated learning. In addition, the additional widespread techniques such as bagging classifier, extra tees classifier, linear discriminant analysis classifier, quadratic discriminant analysis classifier, stochastic gradient boosting classifier, blending models, random forest regressor, and AdaBoost are utilized together. These presented nine algorithms achieved exemplary satisfactory accuracies. The powerful contributions of proposed algorithms can create exact harvest forecasting. Ultimately, we intend to compare our study with the earlier research's results.

Performance analysis and comparison of various machine learning algorithms for early stroke prediction

  • Vinay Padimi;Venkata Sravan Telu;Devarani Devi Ningombam
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.1007-1021
    • /
    • 2023
  • Stroke is the leading cause of permanent disability in adults, and it can cause permanent brain damage. According to the World Health Organization, 795 000 Americans experience a new or recurrent stroke each year. Early detection of medical disorders, for example, strokes, can minimize the disabling effects. Thus, in this paper, we consider various risk factors that contribute to the occurrence of stoke and machine learning algorithms, for example, the decision tree, random forest, and naive Bayes algorithms, on patient characteristics survey data to achieve high prediction accuracy. We also consider the semisupervised self-training technique to predict the risk of stroke. We then consider the near-miss undersampling technique, which can select only instances in larger classes with the smaller class instances. Experimental results demonstrate that the proposed method obtains an accuracy of approximately 98.83% at low cost, which is significantly higher and more reliable compared with the compared techniques.

Regression Algorithms Evaluation for Analysis of Crosstalk in High-Speed Digital System

  • Minhyuk Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권6호
    • /
    • pp.1449-1461
    • /
    • 2024
  • As technology advances, processor speeds are increasing at a rapid pace and digital systems require a significant amount of data bandwidth. As a result, careful consideration of signal integrity is required to ensure reliable and high-speed data processing. Crosstalk has become a vital area of research in signal integrity for electronic packages, mainly because of the high level of integration. Analytic formulas were analyzed in this study to identify the features that can predict crosstalk in multi-conductor transmission lines. Through the analysis, five variables were found and obtained a dataset consisting of 302,500, data points. The study evaluated the performance of various regression models for optimization via automatic machine learning by comparing the machine learning predictions with the analytic solution. Extra tree regression consistently outperformed other algorithms, with coefficients of determination exceeding 0.9 and root mean square logarithmic errors below 0.35. The study also notes that different algorithms produced varied predictions for the two metrics.

Optimized machine learning algorithms for predicting the punching shear capacity of RC flat slabs

  • Huajun Yan;Nan Xie;Dandan Shen
    • Advances in concrete construction
    • /
    • 제17권1호
    • /
    • pp.27-36
    • /
    • 2024
  • Reinforced concrete (RC) flat slabs should be designed based on punching shear strength. As part of this study, machine learning (ML) algorithms were developed to accurately predict the punching shear strength of RC flat slabs without shear reinforcement. It is based on Bayesian optimization (BO), combined with four standard algorithms (Support vector regression, Decision trees, Random forests, Extreme gradient boosting) on 446 datasets that contain six design parameters. Furthermore, an analysis of feature importance is carried out by Shapley additive explanation (SHAP), in order to quantify the effect of design parameters on punching shear strength. According to the results, the BO method produces high prediction accuracy by selecting the optimal hyperparameters for each model. With R2 = 0.985, MAE = 0.0155 MN, RMSE = 0.0244 MN, the BO-XGBoost model performed better than the original XGBoost prediction, which had R2 = 0.917, MAE = 0.064 MN, RMSE = 0.121 MN in total dataset. Additionally, recommendations are provided on how to select factors that will influence punching shear resistance of RC flat slabs without shear reinforcement.

분류자 시스템을 이용한 인공개미의 적응행동의 학습 (Learning of Adaptive Behavior of artificial Ant Using Classifier System)

  • 정치선;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.361-367
    • /
    • 1998
  • The main two applications of the Genetic Algorithms(GA) are the optimization and the machine learning. Machine Learning has two objectives that make the complex system learn its environment and produce the proper output of a system. The machine learning using the Genetic Algorithms is called GA machine learning or genetic-based machine learning (GBML). The machine learning is different from the optimization problems in finding the rule set. In optimization problems, the population of GA should converge into the best individual because optimization problems, the population of GA should converge into the best individual because their objective is the production of the individual near the optimal solution. On the contrary, the machine learning systems need to find the set of cooperative rules. There are two methods in GBML, Michigan method and Pittsburgh method. The former is that each rule is expressed with a string, the latter is that the set of rules is coded into a string. Th classifier system of Holland is the representative model of the Michigan method. The classifier systems arrange the strength of classifiers of classifier list using the message list. In this method, the real time process and on-line learning is possible because a set of rule is adjusted on-line. A classifier system has three major components: Performance system, apportionment of credit system, rule discovery system. In this paper, we solve the food search problem with the learning and evolution of an artificial ant using the learning classifier system.

  • PDF

Development of AR Content for Algorithm Learning

  • Kim, So-Young;Kim, Heesun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.292-298
    • /
    • 2022
  • Coding education and algorithm education are essential in the era of the fourth industrial revolution. Text-oriented algorithm textbooks are perceived as difficult by students who are new to coding and algorithms. There is a need to develop educational content so that students can easily understand the principles of complex algorithms. This paper has implemented basic sorting algorithms as augmented reality contents for students who are new to algorithm education. To make it easier to understand the concept and principles of sorting algorithms, sorting data was expressed as a 3D box and the comparison of values according to the algorithms and the movement of values were produced as augmented reality contents in the form of 3D animations. In order to help with the understanding of sorting algorithms in C language, the change of variable values and the exchange of data were shown as animations according to the execution order of the code and the flow of the loop. Students can conveniently use contents through a smart phone without special equipment by being produced in a marker-based manner. Interest and immersion, as well as understanding of classes of sorting algorithms can be increased through educational augmented reality-based educational contents.

셀 분해 알고리즘을 활용한 심층 강화학습 기반 무인 항공기 경로 계획 (UAV Path Planning based on Deep Reinforcement Learning using Cell Decomposition Algorithm)

  • 김경훈;황병선;선준호;김수현;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.15-20
    • /
    • 2024
  • 무인 항공기의 경로 계획은 고정 및 동적 장애물을 포함하는 복합 환경에서 장애물 충돌을 회피하는 것이 중요하다. RRT나 A*와 같은 경로 계획 알고리즘은 고정된 장애물 회피를 효과적으로 수행하지만, 고차원 환경일수록 계산 복잡도가 증가하는 한계점을 가진다. 강화학습 기반 알고리즘은 복합적인 환경 반영이 가능하지만, 기존 경로 계획 알고리즘과 같이 고차원 환경일수록 훈련 복잡도가 증가하여 수렴성을 기대하기 힘들다. 본 논문은 셀 분해 알고리즘을 활용한 강화학습 모델을 제안한다. 제안한 모델은 학습 환경을 세부적으로 분해하여 환경의 복잡도를 감소시킨다. 또한, 에이전트의 유효한 행동을 설정하여 장애물 회피 성능을 개선한다. 이를 통해 강화학습의 탐험 문제를 해결하고, 학습의 수렴성을 높인다. 시뮬레이션 결과는 제안된 모델이 일반적인 환경의 강화학습 모델과 비교하여 학습 속도를 개선하고 효율적인 경로를 계획할 수 있음을 보여준다.

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.