• Title/Summary/Keyword: Learning Agent

Search Result 457, Processing Time 0.028 seconds

Short Text Classification for Job Placement Chatbot by T-EBOW (T-EBOW를 이용한 취업알선 챗봇용 단문 분류 연구)

  • Kim, Jeongrae;Kim, Han-joon;Jeong, Kyoung Hee
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • Recently, in various business fields, companies are concentrating on providing chatbot services to various environments by adding artificial intelligence to existing messenger platforms. Organizations in the field of job placement also require chatbot services to improve the quality of employment counseling services and to solve the problem of agent management. A text-based general chatbot classifies input user sentences into learned sentences and provides appropriate answers to users. Recently, user sentences inputted to chatbots are inputted as short texts due to the activation of social network services. Therefore, performance improvement of short text classification can contribute to improvement of chatbot service performance. In this paper, we propose T-EBOW (Translation-Extended Bag Of Words), which is a method to add translation information as well as concept information of existing researches in order to strengthen the short text classification for employment chatbot. The performance evaluation results of the T-EBOW applied to the machine learning classification model are superior to those of the conventional method.

A Study on Self-medication for Health Promotion of the Silver Generation

  • Oh, Soonhwan;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.82-88
    • /
    • 2020
  • With the development of medical care in the 21st century and the rapid development of the 4th industry, electronic devices and household goods taking into account the physical and mental aging of the silver generation have been developed, and apps related to health and health are generally developed and operated. The apps currently used by the silver generation are a form that provides information on diseases by focusing on prevention rather than treatment, such as safety management apps for the elderly living alone and methods for preventing diseases. There are not many apps that provide information on foods that have a direct effect and nutrients in that food, and research on apps that can obtain information about individual foods is insufficient. In this paper, we propose an app that analyzes food factors and provides self-medication for health promotion of the silver generation. This app allows the silver generation to conveniently and easily obtain information such as nutrients, calories, and efficacy of food they need. In addition, this app collects/categorizes healthy food information through a textom solution-based crawling agent, and stores highly relevant words in a data resource. In addition, wide deep learning was applied to enable self-medication recommendations for food. When this technique is applied, the most appropriate healthy food is suggested to people with similar eating patterns and tastes in the same age group, and users can receive recommendations on customized healthy foods that they need before eating. This made it possible to obtain convenient healthy food information through a customized interface for the elderly through a smartphone.

Denoising Autoencoder based Noise Reduction Technique for Raman Spectrometers for Standoff Detection of Chemical Warfare Agents (비접촉식 화학작용제 탐지용 라만 분광계를 위한 Denoising Autoencoder 기반 잡음제거 기술)

  • Lee, Chang Sik;Yu, Hyeong-Geun;Park, Jae-Hyeon;Kim, Whimin;Park, Dong-Jo;Chang, Dong Eui;Nam, Hyunwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.374-381
    • /
    • 2021
  • Raman spectrometers are studied and developed for the military purposes because of their nondestructive inspection capability to capture unique spectral features induced by molecular structures of colorless and odorless chemical warfare agents(CWAs) in any phase. Raman spectrometers often suffer from random noise caused by their detector inherent noise, background signal, etc. Thus, reducing the random noise in a measured Raman spectrum can help detection algorithms to find spectral features of CWAs and effectively detect them. In this paper, we propose a denoising autoencoder for Raman spectra with a loss function for sample efficient learning using noisy dataset. We conduct experiments to compare its effect on the measured spectra and detection performance with several existing noise reduction algorithms. The experimental results show that the denoising autoencoder is the most effective noise reduction algorithm among existing noise reduction algorithms for Raman spectrum based standoff detection of CWAs.

Protective effects of Populus tomentiglandulosa against cognitive impairment by regulating oxidative stress in an amyloid beta25-35-induced Alzheimer's disease mouse model

  • Kwon, Yu Ri;Kim, Ji-Hyun;Lee, Sanghyun;Kim, Hyun Young;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.16 no.2
    • /
    • pp.173-193
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Alzheimer's disease (AD) is one of the most representative neurodegenerative disease mainly caused by the excessive production of amyloid beta (Aβ). Several studies on the antioxidant activity and protective effects of Populus tomentiglandulosa (PT) against cerebral ischemia-induced neuronal damage have been reported. Based on this background, the present study investigated the protective effects of PT against cognitive impairment in AD. MATERIALS/METHODS: We orally administered PT (50 and 100 mg/kg/day) for 14 days in an Aβ25-35-induced mouse model and conducted behavioral experiments to test cognitive ability. In addition, we evaluated the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and measured the production of lipid peroxide, nitric oxide (NO), and reactive oxygen species (ROS) in tissues. RESULTS: PT treatment improved the space perceptive ability in the T-maze test, object cognitive ability in the novel object recognition test, and spatial learning/long-term memory in the Morris water-maze test. Moreover, the levels of AST and ALT were not significantly different among the groups, indicating that PT did not show liver toxicity. Furthermore, administration of PT significantly inhibited the production of lipid peroxide, NO, and ROS in the brain, liver, and kidney, suggesting that PT protected against oxidative stress. CONCLUSIONS: Our study demonstrated that administration of PT improved Aβ25-35-induced cognitive impairment by regulating oxidative stress. Therefore, we propose that PT could be used as a natural agent for AD improvement.

Semantic Role Labeling using Biaffine Average Attention Model (Biaffine Average Attention 모델을 이용한 의미역 결정)

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.662-667
    • /
    • 2022
  • Semantic role labeling task(SRL) is to extract predicate and arguments such as agent, patient, place, time. In the previously SRL task studies, a pipeline method extracting linguistic features of sentence has been proposed, but in this method, errors of each extraction work in the pipeline affect semantic role labeling performance. Therefore, methods using End-to-End neural network model have recently been proposed. In this paper, we propose a neural network model using the Biaffine Average Attention model for SRL task. The proposed model consists of a structure that can focus on the entire sentence information regardless of the distance between the predicate in the sentence and the arguments, instead of LSTM model that uses the surrounding information for prediction of a specific token proposed in the previous studies. For evaluation, we used F1 scores to compare two models based BERT model that proposed in existing studies using F1 scores, and found that 76.21% performance was higher than comparison models.

Collision Avoidance Path Control of Multi-AGV Using Multi-Agent Reinforcement Learning (다중 에이전트 강화학습을 이용한 다중 AGV의 충돌 회피 경로 제어)

  • Choi, Ho-Bin;Kim, Ju-Bong;Han, Youn-Hee;Oh, Se-Won;Kim, Kwi-Hoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.281-288
    • /
    • 2022
  • AGVs are often used in industrial applications to transport heavy materials around a large industrial building, such as factories or warehouses. In particular, in fulfillment centers their usefulness is maximized for automation. To increase productivity in warehouses such as fulfillment centers, sophisticated path planning of AGVs is required. We propose a scheme that can be applied to QMIX, a popular cooperative MARL algorithm. The performance was measured with three metrics in several fulfillment center layouts, and the results are presented through comparison with the performance of the existing QMIX. Additionally, we visualize the transport paths of trained AGVs for a visible analysis of the behavior patterns of the AGVs as heat maps.

Multi-task Deep Neural Network Model for T1CE Image Synthesis and Tumor Region Segmentation in Glioblastoma Patients (교모세포종 환자의 T1CE 영상 생성 및 암 영역분할을 위한 멀티 태스크 심층신경망 모델)

  • Kim, Eunjin;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.474-476
    • /
    • 2021
  • Glioblastoma is the most common brain malignancies arising from glial cells. Early diagnosis and treatment plan establishment are important, and cancer is diagnosed mainly through T1CE imaging through injection of a contrast agent. However, the risk of injection of gadolinium-based contrast agents is increasing recently. Region segmentation that marks cancer regions in medical images plays a key role in CAD systems, and deep neural network models for synthesizing new images are also being studied. In this study, we propose a model that simultaneously learns the generation of T1CE images and segmentation of cancer regions. The performance of the proposed model is evaluated using similarity measurements including mean square error and peak signal-to-noise ratio, and shows average result values of 21 and 39 dB.

  • PDF

Evaluation and Prediction of Post-Hepatectomy Liver Failure Using Imaging Techniques: Value of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging

  • Keitaro Sofue;Ryuji Shimada;Eisuke Ueshima;Shohei Komatsu;Takeru Yamaguchi;Shinji Yabe;Yoshiko Ueno;Masatoshi Hori;Takamichi Murakami
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2024
  • Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.

Effects of the Deer Antler Extract on Scopolamine-induced Memory Impairment and Its Related Enzyme Activities (녹용 추출물이 치매 동물모델의 기억력 개선과 관련효소 활성에 미치는 효과)

  • Lee, Mi-Ra;Sun, Bai-Shen;Gu, Li-Juan;Wang, Chun-Yan;Fang, Zhe-Ming;Wang, Zhen;Mo, Eun-Kyoung;Ly, Sun-Young;Sung, Chang-Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.409-414
    • /
    • 2009
  • The aim of this study was to investigate the ameliorating effects of deer antler extract on the learning and memory impairments induced by the administration of scopolamine (2 mg/kg, i.p.) in rats. Tacrine was used as a positive control agent for evaluating the cognition enhancing activity of deer antler extract in scopolamine-induced amnesia models. The results showed that the deer antler extract-treated group (200 mg/kg, p.o.) and the tacrine-treated group (10 mg/kg, p.o.) significantly ameliorated scopolamine-induced amnesia based on the Morris water maze test. Although there was no statistical significance of brain ACh contents among the experimental groups, the brain ACh contents of the deer antler extract-treated group was slightly higher than that of the scopolamine-treated group. The inhibitory effect of deer antler extract on the acetylcholinesterase activity in the brain was significantly lower than that of scopolamine-treated group. The tacrine- and the deer antler-treated groups reduced the MAO-B activity compared to the scopolamine-treated group, but not significantly. These results suggest that the deer antler extract could be an effective agent for the prevention of the cognitive impairment induced by cholinergic dysfunction.

Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer's Disease

  • Kim, Hyeon-Joong;Shin, Eun-Joo;Lee, Byung-Hwan;Choi, Sun-Hye;Jung, Seok-Won;Cho, Ik-Hyun;Hwang, Sung-Hee;Kim, Joon Yong;Han, Jung-Soo;Chung, ChiHye;Jang, Choon-Gon;Rhim, Hyewon;Kim, Hyoung-Chun;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.796-805
    • /
    • 2015
  • Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer's disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced $[Ca^{2+}]_i $ transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated $[Ca^{2+}]_i $ transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 1 2 weeks) also significantly attenuated amyloid-${\beta}$ protein ($A{\beta}$)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to $A{\beta}$ and could be utilized for AD prevention or therapy.