Recently, in various business fields, companies are concentrating on providing chatbot services to various environments by adding artificial intelligence to existing messenger platforms. Organizations in the field of job placement also require chatbot services to improve the quality of employment counseling services and to solve the problem of agent management. A text-based general chatbot classifies input user sentences into learned sentences and provides appropriate answers to users. Recently, user sentences inputted to chatbots are inputted as short texts due to the activation of social network services. Therefore, performance improvement of short text classification can contribute to improvement of chatbot service performance. In this paper, we propose T-EBOW (Translation-Extended Bag Of Words), which is a method to add translation information as well as concept information of existing researches in order to strengthen the short text classification for employment chatbot. The performance evaluation results of the T-EBOW applied to the machine learning classification model are superior to those of the conventional method.
International Journal of Advanced Culture Technology
/
v.8
no.4
/
pp.82-88
/
2020
With the development of medical care in the 21st century and the rapid development of the 4th industry, electronic devices and household goods taking into account the physical and mental aging of the silver generation have been developed, and apps related to health and health are generally developed and operated. The apps currently used by the silver generation are a form that provides information on diseases by focusing on prevention rather than treatment, such as safety management apps for the elderly living alone and methods for preventing diseases. There are not many apps that provide information on foods that have a direct effect and nutrients in that food, and research on apps that can obtain information about individual foods is insufficient. In this paper, we propose an app that analyzes food factors and provides self-medication for health promotion of the silver generation. This app allows the silver generation to conveniently and easily obtain information such as nutrients, calories, and efficacy of food they need. In addition, this app collects/categorizes healthy food information through a textom solution-based crawling agent, and stores highly relevant words in a data resource. In addition, wide deep learning was applied to enable self-medication recommendations for food. When this technique is applied, the most appropriate healthy food is suggested to people with similar eating patterns and tastes in the same age group, and users can receive recommendations on customized healthy foods that they need before eating. This made it possible to obtain convenient healthy food information through a customized interface for the elderly through a smartphone.
Journal of the Korea Institute of Military Science and Technology
/
v.24
no.4
/
pp.374-381
/
2021
Raman spectrometers are studied and developed for the military purposes because of their nondestructive inspection capability to capture unique spectral features induced by molecular structures of colorless and odorless chemical warfare agents(CWAs) in any phase. Raman spectrometers often suffer from random noise caused by their detector inherent noise, background signal, etc. Thus, reducing the random noise in a measured Raman spectrum can help detection algorithms to find spectral features of CWAs and effectively detect them. In this paper, we propose a denoising autoencoder for Raman spectra with a loss function for sample efficient learning using noisy dataset. We conduct experiments to compare its effect on the measured spectra and detection performance with several existing noise reduction algorithms. The experimental results show that the denoising autoencoder is the most effective noise reduction algorithm among existing noise reduction algorithms for Raman spectrum based standoff detection of CWAs.
Kwon, Yu Ri;Kim, Ji-Hyun;Lee, Sanghyun;Kim, Hyun Young;Cho, Eun Ju
Nutrition Research and Practice
/
v.16
no.2
/
pp.173-193
/
2022
BACKGROUND/OBJECTIVES: Alzheimer's disease (AD) is one of the most representative neurodegenerative disease mainly caused by the excessive production of amyloid beta (Aβ). Several studies on the antioxidant activity and protective effects of Populus tomentiglandulosa (PT) against cerebral ischemia-induced neuronal damage have been reported. Based on this background, the present study investigated the protective effects of PT against cognitive impairment in AD. MATERIALS/METHODS: We orally administered PT (50 and 100 mg/kg/day) for 14 days in an Aβ25-35-induced mouse model and conducted behavioral experiments to test cognitive ability. In addition, we evaluated the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and measured the production of lipid peroxide, nitric oxide (NO), and reactive oxygen species (ROS) in tissues. RESULTS: PT treatment improved the space perceptive ability in the T-maze test, object cognitive ability in the novel object recognition test, and spatial learning/long-term memory in the Morris water-maze test. Moreover, the levels of AST and ALT were not significantly different among the groups, indicating that PT did not show liver toxicity. Furthermore, administration of PT significantly inhibited the production of lipid peroxide, NO, and ROS in the brain, liver, and kidney, suggesting that PT protected against oxidative stress. CONCLUSIONS: Our study demonstrated that administration of PT improved Aβ25-35-induced cognitive impairment by regulating oxidative stress. Therefore, we propose that PT could be used as a natural agent for AD improvement.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.5
/
pp.662-667
/
2022
Semantic role labeling task(SRL) is to extract predicate and arguments such as agent, patient, place, time. In the previously SRL task studies, a pipeline method extracting linguistic features of sentence has been proposed, but in this method, errors of each extraction work in the pipeline affect semantic role labeling performance. Therefore, methods using End-to-End neural network model have recently been proposed. In this paper, we propose a neural network model using the Biaffine Average Attention model for SRL task. The proposed model consists of a structure that can focus on the entire sentence information regardless of the distance between the predicate in the sentence and the arguments, instead of LSTM model that uses the surrounding information for prediction of a specific token proposed in the previous studies. For evaluation, we used F1 scores to compare two models based BERT model that proposed in existing studies using F1 scores, and found that 76.21% performance was higher than comparison models.
KIPS Transactions on Computer and Communication Systems
/
v.11
no.9
/
pp.281-288
/
2022
AGVs are often used in industrial applications to transport heavy materials around a large industrial building, such as factories or warehouses. In particular, in fulfillment centers their usefulness is maximized for automation. To increase productivity in warehouses such as fulfillment centers, sophisticated path planning of AGVs is required. We propose a scheme that can be applied to QMIX, a popular cooperative MARL algorithm. The performance was measured with three metrics in several fulfillment center layouts, and the results are presented through comparison with the performance of the existing QMIX. Additionally, we visualize the transport paths of trained AGVs for a visible analysis of the behavior patterns of the AGVs as heat maps.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.474-476
/
2021
Glioblastoma is the most common brain malignancies arising from glial cells. Early diagnosis and treatment plan establishment are important, and cancer is diagnosed mainly through T1CE imaging through injection of a contrast agent. However, the risk of injection of gadolinium-based contrast agents is increasing recently. Region segmentation that marks cancer regions in medical images plays a key role in CAD systems, and deep neural network models for synthesizing new images are also being studied. In this study, we propose a model that simultaneously learns the generation of T1CE images and segmentation of cancer regions. The performance of the proposed model is evaluated using similarity measurements including mean square error and peak signal-to-noise ratio, and shows average result values of 21 and 39 dB.
Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.
Journal of the Korean Society of Food Science and Nutrition
/
v.38
no.4
/
pp.409-414
/
2009
The aim of this study was to investigate the ameliorating effects of deer antler extract on the learning and memory impairments induced by the administration of scopolamine (2 mg/kg, i.p.) in rats. Tacrine was used as a positive control agent for evaluating the cognition enhancing activity of deer antler extract in scopolamine-induced amnesia models. The results showed that the deer antler extract-treated group (200 mg/kg, p.o.) and the tacrine-treated group (10 mg/kg, p.o.) significantly ameliorated scopolamine-induced amnesia based on the Morris water maze test. Although there was no statistical significance of brain ACh contents among the experimental groups, the brain ACh contents of the deer antler extract-treated group was slightly higher than that of the scopolamine-treated group. The inhibitory effect of deer antler extract on the acetylcholinesterase activity in the brain was significantly lower than that of scopolamine-treated group. The tacrine- and the deer antler-treated groups reduced the MAO-B activity compared to the scopolamine-treated group, but not significantly. These results suggest that the deer antler extract could be an effective agent for the prevention of the cognitive impairment induced by cholinergic dysfunction.
Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer's disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced $[Ca^{2+}]_i $ transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated $[Ca^{2+}]_i $ transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 1 2 weeks) also significantly attenuated amyloid-${\beta}$ protein ($A{\beta}$)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to $A{\beta}$ and could be utilized for AD prevention or therapy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.