• Title/Summary/Keyword: Lean combustion

Search Result 463, Processing Time 0.026 seconds

ENGINE CONTROL USING COMBUSTION MODEL

  • Ohyama, Y.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 2001
  • The combination of physical models of an advanced engine control system was proposed to obtain sophisticated combustion control in ultra-lean combustion, including homogeneous compression-ignition and activated radical combustion with a light load and in stoichiometric mixture combustion with a full load. Physical models of intake, combustion and engine thermodynamics were incorporated, in which the effects of residual gas from prior cycles on intake air mass and combustion were taken into consideration. The combined control of compression ignition at a light load and sparit ignition at full load for a high compession ratio engine was investigated using simulations. The control strategies of the variable valve timing and the intake pressure were clarified to keep auto-ignition at a light load and prevent knock at a full load.

  • PDF

Analysis of Combustion Oscillation and its Suppression in a Silo Type Gas Turbine Combustor (Silo 형 가스터빈 연소기에서 발생하는 연소진동 분석 및 저감)

  • Seo, Seok-Bin;Ahn, Dal-Hong;Cha, Dong-Jin;Park, Jong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2009
  • The present study describes an investigation into the characteristics of combustion oscillation and its suppression instability of a silo type gas turbine combustor in commercial power plant. Combustion oscillation is occurred the combustor in near full load during operation. As a result of FFT analysis of the combustion dynamics, the frequency of the oscillation is analyzed as the 1'st longitudinal mode of acoustic resonance of the combustor. For suppress of the instability, combustion tuning with adjust of fuel valve schedule is carried out, which changes equivalent ratio of each burners. As the result, the oscillation is successfully reduced with meeting the level of NOx emission regulation.

A Study on Flame Extinction Behavior in Downstream Interaction between SNG/Air Premixed Flames (SNG/Air 예혼합 화염들의 하류상호작용에 있어서 화염 소화 거동에 관한 연구)

  • Sim, Keunseon;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.48-60
    • /
    • 2016
  • Experimental and numerical studies were conducted to investigate flame behaviors near flammable limits for downstream-interacting SNG-air premixed flames in a counter-flow configuration. The SNG fuel consisted of a methane, a propane, and a hydrogen with volumetric ratios of 91, 6, and 3%, respectively. The most appropriate priority for some reliable reaction mechanisms examined was given to the mechanism of UC San diego via comparison of lean extinction limits attained numerically with experimental ones. Flame stability map was presented with a functional dependencies of lower and upper methane concentrations in terms of global strain rate. The results show that, at the global strain rate of $30s^{-1}$, lean extinction boundary is slanted while rich extinction one is relatively less inclined because of the dependency of such extinction boundary shapes on deficient reactant Lewis number governed by methane mainly. Further increase of global strain rate forces both extinction boundaries to be more slanted and to be shrunk, resulting in an island of extinction boundary and subsequently one flame extinction limit. Extinction mechanisms for lean and rich, symmetric and asymmetric extinction boundary were identified and discussed via heat losses and chemical interaction.

Part Load Performance Characteristics according to Port Masking (포트 마스킹에 따른 엔진 부분부하 성능 특성)

  • Kim, Hyeong-Sig;Kim, In-Ok;Park, Chan-Jun;Ohm, In-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.42-49
    • /
    • 2011
  • To expand lean misfire limit and improve combustion stability, the effects of port masking were estimated to secure basic data for applying the mechanism to SI engine instead of asymmetrical port and port throttling devises. For this purpose, various shapes and ratios of masking plates were mounted between port and manifold. The masking effects were evaluated by mixture response test under various load and speed conditions. The results showed that lean misfire limits were expended and fast combustion was observed for all masking shapes and ratios, especially, the effect of diagonal 1/4 masking was remarkable. In conclusion, the port masking method could be easily applied to engine without redesign of port for improving part load performance.

Combustion Characteristics of Lean Premixed Mixture in Catalytic Combustors (촉매 연소기에서 희박 예혼합기의 연소특성)

  • Seo, Yong Seog;Kang, Sung Kyu;Shin, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1681-1690
    • /
    • 1998
  • The aim of this paper is to investigate combustion characteristics of lean premixed mixture stabilized by catalytic surface reaction. The catalytic combustor consisted of a catalyst bed and a thermal combustor. The catalyst bed was made of two stage, Pd catalyst in the first stage and Pt catalyst in the second stage. Auto ignition of lean mixture took place in the thermal combustor. Ignition temperature was about $810{\sim}820^{\circ}C$ at the fuel-air ratio of 1.5~3.0 % and the mixture velocity of 11~18m/sec. The position of flame front in the thermal combustor moved toward back as preheat temperature increased and fuel-air ratio decreased. The f1ame supported by surface reaction was stabilized without any flame stabilizers. NOx emissions from the catalytic combustor were below 2.0 ppm ($O_2$ 15 %) when gas temperature was limited below $1350^{\circ}C$. This result demonstrates that NOx emission from the catalytic combustor is much low comparing with conventional combustors.

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

Development of High Efficiency and Low Pollutant Cogeneration Hybrid System (고효율 저공해 열병합발전 하이브리드 시스템 개발)

  • Choi, Jae-Joon;Kim, Hyouck-Ju;Chung, Dae-Hun;Park, Hwa-Choon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1031-1035
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system is consist of Lean burn gas engine, afterburner, boiler, economizer, DeNOx catalyst, combustion catalyst, absorption chiller, cooling tower and grid connection system. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10ppm NOx, 50ppm CO, 25ppm UHC. The cogeneration hybrid system can meet the NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF

A Study on Spark Ignition Natural Gas Engines

  • Cho Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.455-462
    • /
    • 2006
  • Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric burn conditions with different combustion and emission characteristics. In this paper, the fuel economy, emissions, misfire, knock and cycle-to-cycle variations in indicated mean effective pressure of lean burn natural gas engines are highlighted. Stoichiometric burn natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to that of gasoline engines, high boosting pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precisely control strategies should be developed to meet stringent emission standards.

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (2) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (2))

  • 박종상;강병무;이명준;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.19-26
    • /
    • 2004
  • A prior fundamental study was executed using a constant volume chamber to improve the burning properties of lean pre-mixture by the injection of active radicals generated in the sub-chamber. In consequence, RI method shows remarkable progress in the aspects of burning velocity and combustible lean limit compared with SI method. In this study, the necessary additional works have been performed to be based on the former results. We changed parameters as the initial temperature and the initial pressure of mixture. And the effects of residual gas at issue in a real engine were investigated. As a result, the effects of initial temperature were significant, but on the other hand, those of initial pressure were slight. The correlation of passage hole number between overall passage hole area was grasped. And the more detailed analysis is required on residual gas.

Effects of Ignition Energy Discharge Characteristics on the Lean Flammability Limit (점화에너지 방전특성이 희박연소한계에 미치는 영향)

  • 이중순;김진영;이종승;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.47-55
    • /
    • 1998
  • A new ignition system concept was developed to improve ignition performance, accuracy of control and the reliability of the ignition system. The new ignition system has ho호 frequency discharge characteristics with 1.5-2.0 ms discharge duration, in place of the usual solitary longer duration event. We applied the system to a commercial engine to study its influence on the maximum combustion pressure attained during the cycle, when this peak pressure occurred, imep, variation rate of the engine speed and the flammability limit of a lean mixture. In this study, we clarified that the new ignition system had a beneficial effect of the lean mixture flammability limit. Also for a given mixture strength we found that the mew ignition system gave a higher peak cylinder pressure than in the case of the conventional ignition system.

  • PDF