• 제목/요약/키워드: Lean Mixture Combustion

검색결과 154건 처리시간 0.031초

메탄/순산소 혼합층에서 Edge Flame의 구조 (Structure of Edge Flame in a Methane-Oxygen Mixing Layer)

  • 최상규;김준홍;정석호;김종수
    • 한국연소학회지
    • /
    • 제11권1호
    • /
    • pp.19-26
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

STUDY ON COMBUSTION CHARACTERISTICS AND APPLICATION OF RADIAL INDUCED IGNITION METHOD IN AN ACTUAL ENGINE

  • PARK J. S.;KANG B. M.;KIM K. J.;LEE T. W.;YEOM J. K.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.555-561
    • /
    • 2005
  • This experimental study was executed to obtain basic data for actual engine operation using radical induced ignition method (RI) which can achieve emission reduction and high efficiency due to the rapid bulk combustion. In this study, a direct injection diesel engine was converted into SI type engine with a sparkplug. The modified SI type engine can be divided into two classes. One is the SI engine with a sparkplug only at the cylinder head, and the other is the SI engine with the sparkplug which is enveloped in a sub-chamber. Also, a basic experimental was conducted in order to investigate combustion mechanism of radical induced injection before the experiment execution for actual engine using the modified SI engine. The bulk combustion phenomenon of radical induced ignition method was analyzed from the basic experiment by using a constant volume chamber. Volume value of sub-chamber used in this experiment is approximately $0.2\%$ of one of the main combustion chamber. In this paper, combustion characteristics using radical induced injection method was compared with that of using spark ignition method according to change in the engine speed and equivalence ratio. As a result, in the case of the radical induced injection engine, the combustion duration and cycle variation were respectively reduced ranged from $\Phi$(equivalence ratio)=0.8 (lean mixture ratio) to $\Phi$=1.0 (stoichiometric ratio).

가스연료엔진의 희박영역에서의 배출가스특성에 관한 연구 (Emission Characteristics of a Gas Fueled Sl Engine under Lean Burn Conditions)

  • 김창업;배충식
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.93-100
    • /
    • 2002
  • For natural gas and LPG fuel, measurements on the concentrations of individual exhaust hydrocarbon species have been made as a function of air-fuel ratio in a 2-liter four-cylinder engine using a gas chromatography. NMHC in addition to the species of HC, other emissions such as CO$_2$, CO and NOx were examined for natural gas and LPG at 1800rpm far two compression ratios (8.6 and 10.6). Fuel conversion efficiencies were also investigated together with emissions to study the effect of engine parameters on the combustion performances in gas engines especially under the lean bum conditions. It was found that CO$_2$ emission decreased with smaller C value of fuel, leaner mixture strength and the higher compression ratio. HC emissions from LPG engine consisted primarily of propane (larger 60%), ethylene and propylene, while main emissions from natural gas were mothane (larger than 60%), ethane, ethylene and propane on the average. The natural gas was proved to give the less ozone formation than LPG fuel. This was accomplished by reducing the emissions of propylene, which has relatively high MIR factor, and propane that originally has large portion of LPG. In addition, natural gas shows a benefit in other emissions (i.e. NMHC,NOx, CO$_2$and CO), SR and BSR values except fuel conversion efficiency.

저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구 (The investigation on the Ignition Delay of n-heptane/n-butanol Blend Fuel Using a Rapid Compression Machine at Low Temperature Combustion Regime)

  • 송재혁;강기중;;;최경민;김덕줄
    • 한국연소학회지
    • /
    • 제18권2호
    • /
    • pp.32-41
    • /
    • 2013
  • This study presents both experimental and numerical investigation of ignition delay time of n-heptane and n-butanol binary fuel. The $O_2$ concentration in the mixture was set to 9-10% to make high exhaust gas recirculation( EGR) rate condition which leads low NOx and soot emission. Experiments were performed using a rapid compression machine(RCM) at compressed pressure 20bar, several compressed temperature and three equivalence ratios(0.4, 1.0, 1.5). In addition, a numerical study on the ignition delay time was performed using CHEMKIN codes to validate experimental results and predict chemical species in the combustion process. The results showed that the ignition delay time increased with increasing the n-butanol fraction due to a decrease of oxidation of n-heptane at the low temperature. Moreover, all of the binary fuel mixtures showed the combustion characteristics of n-heptane such as cool flame mode at low temperature and negative-temperature-coefficient(NTC) behavior. Due to the effect of high EGR rate condition, the operating region is reduced at lean condition and the ignition delay time sharply increased compared with no EGR condition.

Computational Analysis of the Effects of Spray Parameters and Piston Shape on Syngas-Diesel Dual-Fuel Engine Combustion Process

  • Ali, Abubaker Ahmed M.M.;Kabbir, Ali;Kim, Changup;Lee, Yonggyu;Oh, Seungmook;Kim, Ki-seong
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.192-204
    • /
    • 2018
  • In this study, a 3D CFD analysis method for the combustion process was established for a low calorific value syngas-diesel dual-fuel engine operating under very lean fuel-air mixture condition. Also, the accuracy of computational analysis was evaluated by comparing the experimental results with the computed ones. To simulate the combustion for the dual-fuel engine, a new dual-fuel chemical kinetics set was used that was constituted by merging two verified chemical kinetic sets: n-heptane (173 species) for diesel and Gri-mech 3.0 (53 species) for syngas. For dual-fuel mode operations, the early stage of combustion was dominated by the fuel burning inside or near the spray plume. After which, the flame propagated into the syngas in the piston bowl and then proceeded toward the syngas in the squish zone. With the baseline injection system and piston shape, a significant amount of unburned syngas was discharged. To solve this problem, effects of the injection parameters and piston shape on combustion characteristics were analyzed by calculation. The change in injection variables toward increasing the spray plume volume or the penetration length were effective to cause fast burning in the vicinity of TDC by widening the spatial distribution of diesel acting as a seed of auto-ignition. As a result, the unburned syngas fraction was reduced. Changing the piston shape with the shallow depth of the piston bowl and 20% squish area ratio had a significant effect on the combustion pattern and lessened the unburned syngas fraction by half.

고온 채널 내부 에지화염의 소염 한계 영역에서의 화염 안정화 및 구조에 관한 실험적 연구 (Experimental Study on the Edge Flame Stabilization and its Structure Nearby Quenching Limits in a High Temperature Channel)

  • 이민정;김남일
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2010
  • Edge flames have been interested as a basic structure that is concerned to flame stabilization and re-ignition of non-premixed flames. The edge flame consists of a lean premixed flame, a rich premixed flame, and a diffusion flame. In order to investigate fundamental structures of the edge flames at the conditions near the flammability limits, edge flames were stabilized within a heated narrow channel. Highly diluted partially premixed methane was used, and the flow rates of air and the partially premixed mixture were controlled. Various flame behaviors, including a transition between ordinary edge flames and premixed flames, were observed. Flame stabilization characteristics were examined as well. All flame stabilization conditions in this study showed a similar trend: characteristic time scales were inversely proportional to the equivalence ratio defined at the burner inlet. Finally, an interesting flame structure having a weak diffusion branch enveloped by a closed premixed branch was found near the flammability limits even in a fuel-air mixing layer. This structure was named as a "flame-drop" and the importance of this structure was first suggested.

넓은 당량비 구간에서 수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 층류연소속도에 관한 연구 (A study on the laminar burning velocity according to the H2 content variation in a large range of equivalence ratio of syngas(H2/CO)-air premixed flames)

  • 정병규;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.215-218
    • /
    • 2012
  • In this study, syngas laminar burning velocities with various hydrogen contents were studied using both experimental measurements and kinetic simulations. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including burning velocities were made using CHEMKIN Package with USC-Mech II. A large range of syngas mixture compositions such as 10:90%, 25:75%, 50:50%, 75:25% and equivalence ratio from lean condition of 0.5 to rich condition of 5.0 have been conducted. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increasing of $H_2$ content although the flame speed of hydrogen is faster about ten times than carbon monoxide. This phenomenon is attributed to the rapid production of the hydrogen related radicals such as H and OH at the early stage of combustion, which is confirmed the linear increasing of radical concentrations on kinetic simulation.

  • PDF

메탄/순산소 혼합층에서 edge flame의 구조 (Structure of Edge Flame in a Methane-Oxygen Mixing Layer)

  • 최상규;김준홍;정석호;김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.149-156
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

소형 가솔린엔진의 포름알데히드 배출특성 및 저감법에 관한 연구 (Characteristics of Formaldehyde Emission from Small Gasoline Engine and Its Reduction Technology)

  • 최병철;이남석
    • 동력기계공학회지
    • /
    • 제3권2호
    • /
    • pp.20-25
    • /
    • 1999
  • Experiments were carried out to investigate the characteristics of formaldehyde emission from the small gasoline engine and its reduction technologies. Catalytic converters used are Pt/Rh, Pd/Rh, Pd/Pt, $62cell/cm^2$ monolith type. The measurement of formaldehyde was conducted by using the method of DNPH-GC. From the experimental results, formaldehyde emission increased in a lean mixture due to incomplete combustion of the hydrocarbons. The order of catalytic activity of formaldehyde oxidation was Pt/Rh > Pd/Rh > Pd/Pt. As the distance from the exhaust manifold to the inlet of the catalyst became far, in spite of lower catalyst temperature, formaldehyde concentration decreased because of the adsorption of formaldehyde.

  • PDF

LDV를 이용한 급속연소형 흡기포트 설계에 관한 연구 (A study on intake ports design for a fast burn engine using a LDV)

  • 성낙원;강건용
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1358-1371
    • /
    • 1988
  • The combustion process is the most important process in the S.I. engine since it determines performance and emissions. As the flame propagates slowly due to EGR or lean mixture, the fast burn system is widely used in the modern engines in order to improve engine performance. As the basic research for the fast burn system of the S.I engine, this study is aimed to identify the effects of the intake port design on the air motion inside a cylinder. In this study various intake ports were designed and tested. Swirl levels for the different intake ports were measured by a swirl meter and LDv.Also transient air motion inside a cylinder is further investigated following the motion of the boston. Out of the various intake ports tested in this study the masked shroud head (MSH) generates the highest swirl while keeping satisfactory volumetric efficiency. The MSH port also produces high level of turbulence by shearing action between cylinder wall and swirl.