• Title/Summary/Keyword: Leakage current (LC)

Search Result 16, Processing Time 0.023 seconds

Leakage Current Waveforms of Outdoor Polymeric Insulators and Possibility of Application for Diagnostics of Insulator Conditions

  • Suwarno Suwarno
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.114-119
    • /
    • 2006
  • This paper reports the investigation results on the leakage currents (LC) on polymeric outdoor insulators. The samples used were EPDM (ethylene prophylene diene monomer) insulators used at 20 kV distribution lines. AC voltage was applied and the LC waveforms were measured under various environmental conditions (humidity and pollution). Digital data of the LC was transferred from a digital storage oscilloscope to a computer for further analysis. The LC waveform parameters such as magnitude and harmonic content (as indicated by the total harmonic distortion (THD)) were analyzed. The experimental results showed that 3rd, 5th and 7th harmonics and higher odd harmonics were observed for symmetrical-distorted LC waveforms while for unsymmetrical-distorted LC waveforms, odd and even harmonics were observed. The LC analysis indicated that there are 5 stages of insulator conditions from normal condition up to flashover correlated with different kind of LC waveforms. The results also showed that in general the magnitude of LC was good enough to show the condition of the insulators. However, under discharge condition (for example as a result of dry band arching) the LC magnitude should be combined by the THD to show a better correlation with the insulator condition. The product between THD and LC magnitude may be used as a diagnostic parameter.

A Random Forest Model Based Pollution Severity Classification Scheme of High Voltage Transmission Line Insulators

  • Kannan, K.;Shivakumar, R.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.951-960
    • /
    • 2016
  • Tower insulators in electric power transmission network play a crucial role in preserving the reliability of the system. Electrical utilities frequently face the problem of flashover of insulators due to pollution deposition on their surface. Several research works based on leakage current (LC) measurement has been already carried out in developing diagnostic techniques for these insulators. Since the LC signal is highly intermittent in nature, estimation of pollution severity based on LC signal measurement over a short period of time will not produce accurate results. Reports on the measurement and analysis of LC signals over a long period of time is scanty. This paper attempts to use Random Forest (RF) classifier, which produces accurate results on large data bases, to analyze the pollution severity of high voltage tower insulators. Leakage current characteristics over a long period of time were measured in the laboratory on porcelain insulator. Pollution experiments were conducted at 11 kV AC voltage. Time domain analysis and wavelet transform technique were used to extract both basic features and histogram features of the LC signal. RF model was trained and tested with a variety of LC signals measured over a lengthy period of time and it is noticed that the proposed RF model based pollution severity classifier is efficient and will be helpful to electrical utilities for real time implementation.

Single-Phase Transformerless PV Power Conditioning Systems with Low Leakage Current and Active Power Decoupling Capability

  • Nguyen, Hoang Vu;Park, Do-Hyeon;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.997-1006
    • /
    • 2018
  • This paper proposes a transformerless photovoltaic (PV) power converter system based on the DC/AC boost inverter, which can solve the leakage current and second-order ripple power issues in single-phase grid-connected PV inverters. In the proposed topology, the leakage current can be decreased remarkably since most of the common-mode currents flow through the output capacitor, by-passing parasitic capacitors, and grounding resistors. In addition, the inherent ripple power component in the single-phase grid inverter can be suppressed without adding any extra components. Therefore, bulky electrolytic capacitors can be replaced by small film capacitors. The effectiveness of the proposed topology has been verified by simulation and experimental results for a 1-kW PV PCS.

An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications

  • Hwu, Kuo-Ing;Jiang, Wen-Zhuang
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1277-1287
    • /
    • 2016
  • This study proposes a novel isolated high step-up galvanic converter, which is suitable for renewable energy applications and integrates a boost converter, a coupled inductor, a charge pump capacitor cell, and an LC snubber. The proposed converter comprises an input inductor and thus features a continuous input current, which extends the life of the renewable energy chip. Furthermore, the proposed converter can achieve a high voltage gain without an extremely large duty cycle and turn ratio of the coupled inductor by using the charge pump capacitor cell. The leakage inductance energy can be recycled to the output capacitor of the boost converter via the LC snubber and then transferred to the output load. As a result, the voltage spike can be suppressed to a low voltage level. Finally, the basic operating principles and experimental results are provided to verify the effectiveness of the proposed converter.

Leakage Current Energy Harvesting Application in a Photovoltaic (PV) Panel Transformerless Inverter System

  • Khan, Md. Noman Habib;Khan, Sheroz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.190-194
    • /
    • 2017
  • Present-day solar panels incorporate inverters as their core components. Switching devices driven by specialized power controllers are operated in a transformerless inverter topology. However, some challenges associated with this configuration include the absence of isolation, causing leakage currents to flow through various components toward ground. This inevitably causes power losses, often being also the primary reason for the power inverters' analog equipment failure. In this paper, various aspects of the leakage currents are studied using different circuit analysis methods. The primary objective is to convert the leakage current energy into a usable DC voltage source. The research is focused on harvesting the leakage currents for producing circa 1.1 V, derived from recently developed rectifier circuits, and driving a $200{\Omega}$ load with a power in the milliwatt range. Even though the output voltage level is low, the harvested power could be used for charging small batteries or capacitors, even driving light loads.

A Study on Development of Power Supply for High Frequency Induction Heating (고주파 유도가열용 전원장치의 개발에 관한 연구)

  • Lee, Bong-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 2002
  • This paper proposed LC resonant current fed high frequency inverter for high frequency induction heating using leakage inductance of transformer and, its described operating principle. The analysis of circuit presented by using normalized parameter in considering leakage inductance of transformer and, discussed characteristic evaluation of inverter circuit in detail. The proposed inverter is operating ZVS to reduce turn-on and turn-off loss of switching devices so, raised an efficiency. And, the experimental apparatus was made on base characteristic evaluation of theoretical analysis to discuss possibility on high frequency source and confirmed a rightfulness theoretical analysis. A result of study, the proposed inverter is higher utilizing factor using on leakage inductance of transformer and show possibility, which is application on high frequency power system.

  • PDF

S-Transform Based Time-Frequency Analysis of Leakage Current Signals of Transmission Line Insulators under Polluted Conditions

  • Natarajan, A.;Narayanan, Suthanthiravanitha
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.616-624
    • /
    • 2015
  • Flashover of power transmission line insulators due to contamination is a major threat to the reliable operation of power system. This paper deals with the analysis of leakage current characteristics of polymeric insulator using S-Transform technique in order to develop a better diagnostic tool to identify the surface condition of outdoor polymeric insulators. In this work, experiments were carried out on 11 kV silicone rubber insulator under AC voltage at different pollution levels. Moving average technique was adopted to find the trend followed by LC peak at different relative humidity conditions. S-Transform was used to find the relationship between energy and frequency content of the leakage current signal with respect to increase in pollution level over a period of time. From the S-Transform time-frequency contour analysis, point of transition to severe arcing due to increase in pollution and its thershold limit were evaluated. Reported results show that the surface condition of insulators could be easily identified from the S-Transform time-frequency analysis of leakage current signals.

Inorganic ferroelectric materials for LC alignment for high performance display design

  • Lee, Won-Gyu;Choe, Ji-Hyeok;Na, Hyeon-Jae;Im, Ji-Hun;Han, Jeong-Min;Hwang, Jeong-Yeon;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.161-161
    • /
    • 2009
  • Ion bombarded inorganic materials for LC alignment has been researched as it provides controllability in a nonstop process for producing high-resolution displays. Many optically transparent insulators such as $SiOx$ and a-C:H have been investigated as potential candidates for inorganic alignment materials. Even so, LC orientation on a new material with superior capacity is required to produce high-performance displays. Many inorganic materials with high permittivities can reduce the voltage losses due to the LC alignment layer that are a trade-off for its capacitance. The minimum voltage for device operation can be applied to the LC under low external voltage using these materials. This means that low power consumption for LCD applications can be achieved using a high-k alignment structure in which the LC can be driven effectively with a low threshold voltage. Among the many other potential high-k oxides, HfO2 is considered to be one of the most promising due to its remarkable properties of high dielectric constant, relatively low leakage current, large band gap (5.68 eV), and high transparency. Due to these characteristics, HfO2 can be used in LC alignment to increase the capacitance of the inorganic alignment layer for low-voltage driving of LCs.

  • PDF

Analysis and Implementation of LC Series Resonant Converter with Secondary Side Clamp Diodes under DCM Operation for High Step-Up Applications

  • Jia, Pengyu;Yuan, Yiqin
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.363-379
    • /
    • 2019
  • Resonant converters have attracted a lot of attention because of their high efficiency due to the soft-switching performance. An isolated high step-up converter with secondary-side resonant loops is proposed and analyzed in this paper. By placing the resonant loops on the secondary side, the current stress for the resonant capacitors is greatly reduced. The power loss caused by the equivalent series resistance of the resonant capacitor is also decreased. Clamp diodes in parallel with the resonant capacitors ensure a unique discontinuous current mode in the converter. Under this mode, the active switches can realize soft-switching during both turn-on and turn-off transitions. Meanwhile, the reverse-recovery problems of diodes are also alleviated by the leakage inductor. The converter is essentially a step-up converter. Therefore, it is helpful for decreasing the transformer turn-ratio when it is applied as a high step-up converter. The steady-state operation principle is analyzed in detail and design considerations are presented in this paper. Theoretical conclusions are verified by experimental results obtained from a 500W prototype with a 35V-42V input and a 400V output.

LCL Resonant Compensation of Movable ICPT Systems with a Multi-load

  • Hua, Jie;Wang, Hui-Zhen;Zhao, Yao;Zou, Ai-Long
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1654-1663
    • /
    • 2015
  • Compared to LC resonance, LCL resonance has distinct advantages such as a large resonant capability, low voltage and current stresses of the power device, constant voltage or current output characteristics, and fault-tolerance capability. Thus, LCL resonant compensation is employed for a movable Inductive Contactless Power Transfer (ICPT) system with a multi-load in this paper, which achieves constant current output characteristics. Peculiarly, the primary side adopts a much larger compensation inductor than the primary leakage inductor to lower the reactive power, reduce the input current ripple, generate a large current in the primary side, and realize soft-switching. Furthermore, this paper proposes an approximate resonant point for large inductor-ratio LCL resonant compensation through fundamental wave analysis. In addition, the PWM control strategy is used for this system to achieve constant current output characteristics. Finally, an experimental platform is built, whose secondary E-Type coils can ride and move on a primary rail. Simulations and experiments are conducted to verify the effectiveness and accuracy of both the theory and the design method.