• Title/Summary/Keyword: Leakage Performance

Search Result 1,177, Processing Time 0.028 seconds

Air Jet Effect on Performance Improvement of Non-Contact Type Seals for Oil Mist Lubrication Systems (공기분사가 오일미스트 윤활 시스템용 비접촉 시일의 성능 향상에 미치는 영향)

  • Na, Byeong-Cheol;Jeon, Gyeong-Jin;Han, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2159-2166
    • /
    • 2000
  • Recently, high performance machining center requires special type of sealing mechanism that prevent a leakage of oil jet or oil mist lubrication system. Sealing of oil-air mixture plays important r oles to have an enhanced lubrication for performance machining center. Current work emphasizes on investigations of the air jet effect on the protective collar type labyrinth seal. To improve sealing capabilities of conventional labyrinth seals, air jet is injected against the leakage flow. In this study, an adapted model is introduced to improve sealing capability of conventional non-contact type seals. It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. The sealing effects of the leakage clearance and the air jet magnitude aic studied in various parameters. Gas or liquid has been used as a working fluid for most of nori-contact types seals including the labyrinth seal. However, it is more reasonable to regard two-phase flows because oil mist or oil jet are used for high performance spindle's lubrication. In this study, working fluid is regarded as two phases that are mixed flow of oil and air phase. Both of turbulence and compressible flow model are also introduced in a CFD analysis to represent an isentropic process. Estimation of non-leaking property is determined by amount of pressure drop in the leakage path. Results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effect of the sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger

Dipole Model to Predict the Rectangular Defect on Ferromagnetic Pipe

  • Suresh, V.;Abudhair, A.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.437-441
    • /
    • 2016
  • Dipole model based analytical expression is proposed to estimate the length and depth of the rectangular defect on ferromagnetic pipe. Among the three leakage profiles of Magnetic Flux Leakage (MFL), radial and axial leakage profiles are considered in this work. Permeability variation of the specimen is ignored by considering the flux density as close to saturation level of the inspected specimen. Comparing the profile of both the components, radial leakage profile furnishes the better estimation of defect parameter. This is evident from the results of error percentage of length and depth of the defect. Normalized pattern of the proposed analytical model radial leakage profile is good agreement with the experimentally obtained profile support the performance of proposed expression.

A System for Improving Data Leakage Detection based on Association Relationship between Data Leakage Patterns

  • Seo, Min-Ji;Kim, Myung-Ho
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.520-537
    • /
    • 2019
  • This paper proposes a system that can detect the data leakage pattern using a convolutional neural network based on defining the behaviors of leaking data. In this case, the leakage detection scenario of data leakage is composed of the patterns of occurrence of security logs by administration and related patterns between the security logs that are analyzed by association relationship analysis. This proposed system then detects whether the data is leaked through the convolutional neural network using an insider malicious behavior graph. Since each graph is drawn according to the leakage detection scenario of a data leakage, the system can identify the criminal insider along with the source of malicious behavior according to the results of the convolutional neural network. The results of the performance experiment using a virtual scenario show that even if a new malicious pattern that has not been previously defined is inputted into the data leakage detection system, it is possible to determine whether the data has been leaked. In addition, as compared with other data leakage detection systems, it can be seen that the proposed system is able to detect data leakage more flexibly.

A new method fast measure cryogenic vessel heat leakage

  • LI, Zheng-Qing;LI, Xiao-Jin;LIU, Mo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2020
  • Heat leakage is an important parameter to reflect heat insulated performance of cryogenic vessel. According to the current standard requirements, it needs to measure the daily evaporation rate to indicate heat leakage. The test needs-over 24h after cryogenic vessel in heat equilibrium as standard required, therefore test efficiency is poor and new efficient method is required to cut test time. First of all, the volume of instantaneous evaporated gas and heat leakage are calculated by the current standard corresponding to the maximum allowable daily evaporation rate of cryogenic vessel. Depending on the relationship between real daily evaporation rate and maximum allowable daily evaporation rate of cryogenic vessel, we designed a new test method based on the pressure changes over time in cryogenic vessel to determine whether its heat insulated performance meets requirements or not. Secondly, the heat transfer process was analyzed in measurement of cryogenic vessel, and the heat transfer equations of whole system were established. Finally, the test was completed in four hours; meanwhile the heat leakage and daily evaporation rate of cryogenic vessel are calculated basing on test data.

Air Similarity Test and Analysis of Steam Turbine Labyrinth Seal for Leakage Verification (스팀터빈용 래비린스 실의 누설량 규명을 위한 공기상사 실험 및 해석)

  • Ahn, Sang-Kyu;Kim, Seung-Jong;Lee, Yong-Bok;Kim, Chang-Ho;Ha, Tae-Wong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1149-1149
    • /
    • 2006
  • The leakage characteristic is an important factor in power plant. However, most of power plant have efficiency problem which is occurred leaking between high pressure steam turbine axle and stator. The labyrinth seal which is used between the main turbine axle and stator in the power plant. Because it is able to be non-contact seal and it is minimize clearance to decrease the leakage. But its actual system is too huge to experiment. Therefore, most steam turbine seal performance tests were conducted by air similarity test. This paper described a test facility and program for air similarity test of high pressure steam turbine seal. A test facility has been designed and built to evaluate leakage verification of labyrinth seal. The test facility consist of air compressor, anti-swirl labyrinth seal for 1/3 air similarity model, pressure transducer, air flow measure system, instrumentation and auxiliary system. For evaluation of steam turbine seal performance, the air similarity test of labyrinth seal leakage verification was conducted and we compared experiment data and analysis result.

  • PDF

Electric Leakage Point Detection System of Underground Power Cable Using Half-period Modulated Transmission Waveform and Earth Electric Potential Measurement (반주기 변조된 송신파형과 대지전위 측정을 이용한 지중 케이블 누전 고장점 탐지 시스템)

  • Jeon, Jeong Chay;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2113-2118
    • /
    • 2016
  • The precise detection of electric leakage point of underground power cable is very important to reduce cost and time of maintenance and prevent electric shock accident through expedite repair of electric leakage point. This paper proposes a electric leakage point detection system underground power cable using of half-period modulated transmission waveform and earth electric potential measurement. The developed system is composed of transmitter to generate the wanted pulse waveform, receiver to measure and display earth electric potential by the transmitted pulse in electric leakage point and PC Software program to display of GPS coordinate on detection cable line. The performance of the electric leakage point detection system was tested in the constructed underground cable leakage detection test bed. The test results on signal generation voltage precision of signal transmitter, mean detection earth voltage, mean detection leakage current and electric leakage point detection error showed the developed system can be used in electric leakage point detection underground power cable.

Modeling and Analysis of Leakage Currents in PWM-VSI-Fed PMSM Drives for Air-Conditioners with High Accuracy and within a Wide Frequency Range

  • Sun, Kai;Lu, Yangjun;Xing, Yan;Huang, Lipei
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.970-981
    • /
    • 2016
  • Leakage currents occur in pulse-width-modulated voltage source inverter (PWM-VSI)-fed permanent magnet synchronous motor (PMSM) drives for air-conditioners, which seriously affect system safety and operation performance. High accuracy modeling and prediction of leakage currents are key issues for the design and implementation of air-conditioning products. In this study, the generation mechanism of leakage currents is discussed. A systematic modeling approach of leakage currents is proposed, including the modeling of leakage current sources and leakage current paths. By using the proposed approach, the complete model of leakage currents in PWM-VSI-fed PMSM drives for air-conditioners has been developed based on the extraction of all parameters. A comparison between the simulated leakage currents based on the developed model and measured leakage currents in the outdoor unit of an air-conditioning product is conducted. The comparison verifies the effectiveness of the proposed modeling approach, and the developed model exhibits high accuracy within a wide frequency range.

A Study on the As-Built Leakage Diagnosis of Main Steam Drain Valves for Nuclear Power Plants by Multi-measuring Technique (다중계측기법을 이용한 원전 주증기배수밸브의 현상태 누설진단에 관한 연구)

  • Kim, Sung-Young;Kim, Young-Bum;Kim, Do-Hyeong;Lee, Sang-Gok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2606-2611
    • /
    • 2008
  • The high energy fluid leakage from the high temperature and high differential pressure drop system of NPPs (Nuclear Power Plants) decreases efficiency and consequently leads to considerable economic loss due to less power production. Also, the leakage possibly damages critical parts of components such as valve and trim with the effect of cavitation, flashing, and erosion, etc. and deteriorates its performance. Thus, in this study, we diagnosed the as-is leakage for four (4) main steam drain valves and two (2) steam traps of Yonggwang 1,2 units during normal operation by using multi-measuring technique and observed the occurrence of fine leakage. In the course of measuring fluid leakage, the sign of fine leakage is estimated to be the leakage from orifice. By converting the leakage to energy loss, it is equivalent to the amount of several hundred thousand won per each unit, which supports the basis for the justification of fine leakage.

  • PDF

Numerical Study on Tip Clearance Effect on Performance of a Centrifugal Compressor (익단간극이 원심압축기 성능에 미치는 영향에 관한 수치해석적 연구)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.389-397
    • /
    • 2003
  • Effect of tip leakage flow on through flow and performance of a centrifugal compressor impeller was numerically studied using CFX-TASC flow. Seven different tip clearances were used to consider the influence of tip clearance on performance. Secondary flow and loss factor were evaluated to understand the loss mechanism inside the impeller due to tip leakage flow. The calculated results were circumferentially averaged along the passage and at the impeller exit for quantitative discussion. Tip clearance effect on Performance could be decomposed into inviscid and viscous components using one dimensional equation. The inviscid component is related with the specific work reduction and the viscous component is related with the additional entropy generation. Two components affected Performance equally. while efficiency drop was mainly influenced by viscous loss. Performance and efficiency drop due to tip clearance were proportional to the ratio of tip clearance to exit blade height. A simple model suggested in the present study predict performance and efficiency drop quite successfully.

Evaluation of Flowfield and Flow Losses insied Axial Turbomachinery Using Numerical Calculation [Evaluation of Tip Leakage Loss and Reduction of Efficiency by Tip Clearance] (수치계산에 의한 축류터보기계의 유동장과 유동온실의 평가 III [회전차 익말단의 누설손실과 효율저하에 대한 평가])

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.240-247
    • /
    • 1998
  • Leakage vortices formed near blade tip causes an increase of total pressure loss near casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the less distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and aprroximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF