• Title/Summary/Keyword: Leakage Magnetic Flux Method

Search Result 90, Processing Time 0.034 seconds

Analysis of Slot Leakage Reactance of Submersible Motor with Closed Slots during Starting Transient Operation

  • Bao, Xiaohua;Di, Chong;Fang, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.135-142
    • /
    • 2016
  • Generally, closed slots are adopted to reduce the water friction loss in both the stator and the rotor of water filling submersible motor due to the special environment of operation. One of the obvious differences between the traditional induction motors and water filling submersible motors is that the submersible motors only need relatively smaller starting torque. This paper aims to analyze the slot leakage reactance of water filling submersible motor during starting transient operation. An improved analytical method which considered the magnetic saturation of the slot bridge and the skin effect of rotor bars is proposed. The slot permeance factor which has a direct impact on the slot leakage reactance is calculated. Then finite element models with different stator slot types are constructed and search coils are introduced to measure the slot flux linkage. Moreover, the starting performances of the models with two typical stator slots are compared and the flux leakage characteristics are obtained. Finally, the results obtained by finite element method are very close to the results obtained by analytical method.

Defect Estimation of a Crack in Underground Pipelines by CMFL Type NDT System

  • Kim, Hui Min;Park, Gwan Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2218-2223
    • /
    • 2014
  • A crack which is axially oriented with small size is hard to detect in conventional system. CMFL(Circumferential Magnetic Flux Leakage) type PIG(Pipelines Inspection Gauge) in the NDT(Nondestructive Testing), is operated to detect this defect called axially oriented cracks in the pipe. It is necessary to decompose the size and shapes of cracks for the maintenance of underground pipelines. This article is mainly focused on the decomposing method of the size and shape of the axially oriented cracks by using inspection signal data for defect.

The Loss Calculation of Eddy Current of the Tank and Winding Supports in Transformers by the Leakage Flux (누설자속에 의한 대용량 변압기의 권선지지구조 및 외함의 와전류손실 계산에 관한 연구)

  • Heo, Woo-Heng;Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.948-950
    • /
    • 2005
  • This paper compared the test data with the loss when a conductor is exposed to the magnetic fieldof reactors after generating external magnetic field in specimen by means of an air core reactor model and the calculation of loss came from a tying the combination of FEM and integral method. It was applied to the loss measurement of transformers due to leakage flux.

  • PDF

Optimization of Magnetic Flux-path Design for Reduction of Shaft Voltage in IPM-Type BLDC Motor

  • Kim, Kyung-Tae;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2187-2193
    • /
    • 2014
  • In this paper, we propose a method for suppressing shaft voltage by modifying the rotor shape and the permanent magnets in interior permanent magnet type high voltage motors. The shaft voltage, which adversely affects the bearing by occurring bearing current, is induced by parasitic components and the leakage flux in motor-driven systems as well as inherent linkage flux between main magnetic flux and shaft according to rotor configuration. Thus, shaft voltage should be analyzed and considered under inverter-driven and non-inverter-driven conditions because inherent linkage flux can analyze under non-inverter-driven condition. In this study, we designed re-arrangement magnet and re-structuring rotor to minimize the shaft voltage. In addition, we optimized the proposed models. The shaft voltage suppression effect of the designed model was validated experimentally and by comparative finite element analysis.

Stability Analysis Of High-Tc Superconducting Tape Through Magnetic Field Analysis Of The High-Tc Superconducting Synchronous Motor (고온초전도동기모터의 자계분포해석에 따른 테이프선재의 안정도해석)

  • 송명곤;장원갑;윤용수;문창욱;홍계원;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.81-84
    • /
    • 1999
  • The purpose of this paper is to find the magnetic field distribution inside the motor in order to find out if the high-Tc superconducting tapes operate stably in actual motor operation. With this gola, magnetic field distribution in a detailed model of the actual motor was analyzed through F.E.M. (Finite Element Method). As a result, it has been proved that the high-Tc superconducting tapes can withstand 4 A of current with stability. 4 A was the amount of current needed to achieve 600 A ·turns which is required by the previous simulation aimed at developing this motor. Also, it has been observed that the flux damper reduces armature reactance during the motor operation and during load changes, helping the stable motor operation. But, it was observed that the flux damper generates loss by means of leakage flux and this decreases the output of the motor by about 5%.

  • PDF

Analysis and Design of Permanent Magnet Motor by the Improved Permeance Method (개선된 퍼미언스법에 의한 영구자석 회전기의 해석 및 설계)

  • Chung, Tae-Kyung;Oh, Seung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.175-178
    • /
    • 1998
  • To analyze and design a motor magnetic permeance method and numerical methods such as F.E.M. are used. In this thesis, DC motor is analyzed and designed by the permeance method. Modified Carter coefficient and leakage permeance are presented. A magnetic flux path can be approximated properly by using a equivalent ${\pi}$ network representation adding the leakage coefficient. Finally, effective and easy-to-use program is realized. Experimental analysis and design with an actual motor proves that this program produces reliable results. There are many experimental coefficients in this algorithm and it makes some design errors. Using of this program, an motor engineer can obtain satisfactory characteristic and design value by inputting initial data at once.

  • PDF

A Study on the Measurement of Axial Cracks in the Magnetic Flux Leakage NDT System (자기누설 비파괴 검사 시스템에서 축방향 미소결함 측정에 관한 연구)

  • Kim, Hui-Min;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu;Koo, Sung-Ja
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • From among the NDT (Non-Destructive Testing) methods, the MFL (Magnetic Flux Leakage) PIG (Pipeline Inspection Gauge) is especially suitable for testing pipelines because the pipeline has high magnetic permeability. MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is difficult to detect the crack which occured by exterior-interior pressure difference in pipelines and the shape of crack is very long and narrow. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The CMFL (Circumferential MF) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). By Simulating and Measuring the magnetic leakage field, it is possible to detect of axial cracks in the pipeline.

Analysis of Magnetic Flux Leakage based Local Damage Detection Sensitivity According to Thickness of Steel Plate (누설자속 기반 강판 두께별 국부 손상 진단 감도 분석)

  • Kim, Ju-Won;Yu, Byoungjoon;Park, Sehwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • To diagnosis the local damages of the steel plates, magnetic flux leakage (MFL) method that is known as a adaptable non-destructive evaluation (NDE) method for continuum ferromagnetic members was applied in this study. To analysis the sensitivity according to thickness of steel plate in MFL method based damage diagnosis, several steel plate specimens that have different thickness were prepared and three depths of artificial damage were formed to the each specimens. To measured the MFL signals, a MFL sensor head that have a constant magnetization intensity were fabricated using a hall sensor and a magnetization yoke using permanent magnets. The magnetic flux signals obtained by using MFL sensor head were improved through a series of signal processing methods. The capability of local damage detection was verified from the measured MFL signals from each damage points. And, the peak to peak values (P-P value) extracted from the detected MFL signals from each thickness specimen were compared each other to analysis the MFL based local damage detection sensitivity according to the thickness of steel plate.

A study on Magnetic Field Analysis of Pneumatic Solenoid Valve and its Application to Valve Design (공기압용 전자밸브의 자장해석과 밸브설계에의 응용)

  • Gang, Bo-Sik;Kim, Hyeong-Ui
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.41-48
    • /
    • 1990
  • Electro-pneumatic valves are an electro-mechanical device which convert electric signal into pneumatic flow rate or pressure signal. Recently, the development tendency of electro-pneumatic valve is to make the valve with more compact and less electric power consumption style. To make the valve such as a style, the role of solenoid part is very important. This paper is used in the finite-element method for the purpose of evaluating the magnetic property of solenoid and analyze flux distribution of solenoid theoretically. From flux contour line which is obtained by numerical analysis, it verified that the plunger shape and physical property of solenoid part have influence on saturation phenomenon and leakage of magnetic fluxs. This paper made an experiment on the measurement of dynamic response time and force in order to confirm the propety of analytic result, and confirmed a good agreement between analysis results and experiment results.

  • PDF

Development of an omni-directional shear-horizontal wave magnetostrictive patch transducer for the effective inspection of a ferromagnetic plate (효과적인 강자성체 평판구조물 검사를 위한 전 방향 전단파 자기변형 패치 트랜스듀서 개발)

  • Seung, Hong Min;Kim, Yoon Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.548-549
    • /
    • 2014
  • Omni-directional shear-horizontal magnetostrictive patch transducers have a disadvantage that magnetic flux leakage into the plate when it is installed on a ferromagnetic plate. The leakage produces poor transduction efficiency and unwanted wave mode excitation which should be avoided in guided wave inspections of large plate-like structures. In order to resolve these problems, we newly developed a method to reduce the leakage into the plate. In the method, the patch and the magnet are vertically lifted off and their optimal positions are determined by numerical simulations. Also, the verification of the developed method is successfully verified by experiments.

  • PDF