• Title/Summary/Keyword: Leakage Magnetic Flux

Search Result 183, Processing Time 0.02 seconds

A Study on the Measurement of Axial Cracks in the Magnetic Flux Leakage NDT System (자기누설 비파괴 검사 시스템에서 축방향 미소결함 측정에 관한 연구)

  • Kim, Hui-Min;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu;Koo, Sung-Ja
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • From among the NDT (Non-Destructive Testing) methods, the MFL (Magnetic Flux Leakage) PIG (Pipeline Inspection Gauge) is especially suitable for testing pipelines because the pipeline has high magnetic permeability. MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is difficult to detect the crack which occured by exterior-interior pressure difference in pipelines and the shape of crack is very long and narrow. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The CMFL (Circumferential MF) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). By Simulating and Measuring the magnetic leakage field, it is possible to detect of axial cracks in the pipeline.

Stability Analysis Of High-Tc Superconducting Tape Through Magnetic Field Analysis Of The High-Tc Superconducting Synchronous Motor (고온초전도동기모터의 자계분포해석에 따른 테이프선재의 안정도해석)

  • 송명곤;장원갑;윤용수;문창욱;홍계원;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.81-84
    • /
    • 1999
  • The purpose of this paper is to find the magnetic field distribution inside the motor in order to find out if the high-Tc superconducting tapes operate stably in actual motor operation. With this gola, magnetic field distribution in a detailed model of the actual motor was analyzed through F.E.M. (Finite Element Method). As a result, it has been proved that the high-Tc superconducting tapes can withstand 4 A of current with stability. 4 A was the amount of current needed to achieve 600 A ·turns which is required by the previous simulation aimed at developing this motor. Also, it has been observed that the flux damper reduces armature reactance during the motor operation and during load changes, helping the stable motor operation. But, it was observed that the flux damper generates loss by means of leakage flux and this decreases the output of the motor by about 5%.

  • PDF

Effect of Racetrack Pit Depth and Bulk Stress on Far and Near-side Magnetic Flux Leakage at Ferromagnetic Pipeline (강자성 배관 외.내부 벽의 racetrack형 결함깊이와 부피응력이 누설자속에 미치는 영향)

  • Ryu, K.S.;Park, Y.T.;Son, D.;Atherton, D.L.;Clapham, L.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.70-75
    • /
    • 2003
  • Non-linear anisotropic materials were used to simulate the effects of bulk tensile stress in 3D finite element analysis (FEA). FEA was used to calculate the effects of near and far-side racetrack pit depth and simulated bulk tensile stress on magnetic flux leakage (MFL) signals. The axial and radial MFL signals were depended on near and far-side racetrack pit depth and on the bulk stress, but the circumferential MFL signal was not depended on them. The axial and radial MFL signals increased with greater pit depth and applied bulk stress, but the circumferential MFL signal was scarcely changed.

Parameter Design of The Magnet Gear with A Closed Magnetic Path (자기 폐회로를 갖는 마그네트 기어의 변수 설계)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.7-12
    • /
    • 2015
  • A novel topology for the magnet gear is proposed in this study. Differently from the existing methods, both sides of magnet array in this topology are used, resulting in increasing the efficiency of the mechanism. The closed magnetic path between the magnetic elements decreases the leakage flux, so the interlinking magnetic flux through the air-gap is focused and intensified. This paper discusses the dominant parameters of the proposed magnet gear influencing the resulting transmission torque. The parameters are designed from the sensitivity analysis using the commercial FEM analysis tool. And, the test setup for verifying the performance of the system is described.

Analysis of Single-phase Induction Motor Having Space Harmonics in Its Magnetic Field (고주파자속을 고려한 단순상유도전동기의 해석)

  • Keung Yul Oh
    • 전기의세계
    • /
    • v.22 no.3
    • /
    • pp.25-34
    • /
    • 1973
  • In this paper, the characteristics of a single phase induction motor which is considered the space harmonic flux by the double revolving field theory is analysed. As the rotor resistance for the fundamental flux is separated from the resistance for the rotor bar and end-ring, and the rotor leakage reactnace is separated from the skew leakage reactance and the other, so the circuit constants for the space harmonic flux is expressed by the circuit constants for the fundamentals. As the ratio of the circuit constants for the magnetizing reactance is used, the generalized equivalent circuit is made up. the characteristic equation which is able to analysis the subdivided characteristics by the above circuit is induced. The ratio of the circuit constants and the skew angle being changed, the variations of the torque-speed characteristics for the fundamentals and harmonics is examined by this equation.

  • PDF

Time dependent numerical simulation of MFL coil sensor for metal damage detection

  • Azad, Ali;Lee, Jong-Jae;Kim, Namgyu
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.727-735
    • /
    • 2021
  • Recently, non-destructive health monitoring methods such as magnetic flux leakage (MFL) method, have become popular due to their advantages over destructive methods. Currently, numerical study on this field has been limited to simplified studies by only obtaining MFL instead of induced voltage inside coil sensor. In this study, it was proposed to perform a novel numerical simulation of MFL's coil sensor by considering vital parameters including specimen's motion with constant velocity and saturation status of specimen in time domain. A steel-rod specimen with two stepwise cross-sectional changes (i.e., 21% and 16%) was fabricated using low carbon steel. In order to evaluate the results of numerical simulation, an experimental test was also conducted using a magnetic probe, with same size specimen and test parameters, exclusively. According to comparative results of numerical simulation and experimental test, similar signal amplitude and signal pattern were observed. Thus, proposed numerical simulation method can be used as a reliable source to check efficiency of sensor probe when different size specimens with different defects should be inspected.