• Title/Summary/Keyword: Leakage Flux

Search Result 313, Processing Time 0.023 seconds

Study on designing of Flat Transformer and operating characteristics of Converter (Flat Transformer 코아의 설계와 컨버터 동작 특성)

  • Han, Se-Won;Cho, Han-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • The first attention in designing a transformer for low temperature rise should be to reduce losses. Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

Electric Shock Risk Assessment of the Human Body and Potential Distribution Analysis by FLUX3D in a Public Bathtub (공중욕조에서의 FLUX3D에 의한 전위분포 해석 및 인체의 전격위험성 평가)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Lee, Jong-Ho;Kim, Han-Sang;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.41-46
    • /
    • 2007
  • This paper considers the electrical shock risk of the human body due to underwater leakage current in such places of public baths. Many submerged electric facilities in a public bath may create a severe electric shock hazard for the human body, since wet body in an accidentally energized bathtub can result in low electrical resistance through the human body for leakage or fault currents. Therefore a major consideration, in the context of electrical safety underwater, is the shock risk to the bather as a result of electric current flowing through the water in bathtub. To assess the electric shock risk and to analyze the potential distribution in a bathtub, 2 different situation cases are set up, then experimental and simulation methods are adopted. The validity of 2 cases of simulation and experiment data in a bathtub for electric distribution underwater are compared and analyzed. Also electric shock risk assessment underwater in a real public bathtub by simulation program package, Flux 3D, was conducted herein, and the results are presented and discussed.

A Study on the Signal Correction for Multiple Defects in MFL Type Nondestructive Testing System (MFL 비파괴 검사 시스템에서 다중 결함에 의한 신호 왜곡과 신호 보정에 관한 연구)

  • Park, Jeng Hoon;Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • MFL (Magnetic flux leakage) type nondestructive testing has been used for inspection of underground gas pipelines to find metal defects by detecting magnetic leakage signal. Because the underground gas pipeline is exposed by environment such as high pressure with great humidity, external defects are easily formed on the surface of pipelines and they are being grouped respectively. These adjacent defects cause the signal distortion of leakage flux so that it is hard to estimate the shape information of defects. In this paper, we performed to study of the signal distortion and compensating method for multiple defects in MFL type nondestructive testing system by using 3D FEM simulation. This paper proposes the basic algorithm of defect signal analysis on multiple defects on the surface of 30 inch diameter pipeline.

A Study on Direct Current Measurement Using Magneto-Optical LMF Method (자기장학 누설자속법을 응용한 직류전류계측법에 관한 연구)

  • Lee, Jin-Yi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2004
  • It is necessary to measure the direct current with a non-contact methodology for the liquid or gas phase, as welt as the conducting metals. This paper described a theoretical consideration and experimental verification for a non-contact quantitative direct current measurement system using the Faraday effect and magnetic flux leakage. The leakage of magnetic flux occurs around a gap when a ferromagnetic core including the discontinuous gap is magnetized. Two large anisotropic domains in a magneto-optical film are occurred by the vertical component of leaked magnetic flux and the domain walls are paralleled to the center of the gap. Here, the symmetrical arrangement of domains are deflected when a vertical magnetic field is applied to the magneto-optical film. The domain wall of the magneto-optical film are relocated when a measuring current passes through the ferromagnetic core. Therefore, a direct current passing through the core can be determined quantitatively by the measurement of moving distance of the domain wall.

Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan (전향 축류형 홴에서의 익단 누설 유동 구조)

  • Lee, Gong-Hee;Myung, Hwan-Joo;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.883-892
    • /
    • 2003
  • The experiment using three-dimensional laser Dopperr velocimetery (LDV) measurements and the computation using the Reynolds stress model of the commercial code, FLUENT, were conducted to give a clear understanding on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition. The tip leakage vortex was generated near the position of the minimum wall static pressure, which was located at approximately 12% chord downstream from the leading edge of blade suction side, and developed along the centerline of the pressure trough within the blade passages. A reverse flow between the blade tip region and the casing, induced by tip leakage vortex, acted as a blockage on the through-flow. As a result, high momentum flux was observed below the tip leakage vortex. As the tip leakage vortex proceeded to the aft part of the blade passage, the strength of tip leakage vortex decreased due to the strong interaction with the through-flow and casing boundary layer, and the diffusion of tip leakage vortex caused by high turbulence. In comparison with LDV measurement data, the computed results predicted the complex viscous flow patterns inside the tip region, including the locus of tip leakage vortex center, in a reliable level.

Operation Principle and Topology Structures of Axial Flux-Switching Hybrid Excitation Synchronous Machine

  • Liu, Xiping;Wang, Chen;Zheng, Aihua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • The operation principle of an axial flux-switching hybrid excitation synchronous machine (AFHESM) is analyzed and its topology structures are proposed in this paper. After some comprehensive analysis of the operation principle to axial flux electrical machine, flux-switching electrical machine and hybrid excitation electrical machine, the operation principle of AFHESM is given. Combined with some typical topological structures of hybrid excitation electrical machine, some possible topological structures are proposed and some comprehensive comparisons are carried out. The analysis results show that the stator-separated AFHESM has some advantages such as less AM turns, less impact on the demagnetization of PM, less magnetic flux-leakage and higher efficiency compared to other topologies.

Local Fault Detection Technique for Steel Cable using Multi-Channel Magnetic Flux Leakage Sensor (다채널 자속누설 센서를 이용한 강케이블의 국부 단면손상 검색)

  • Park, Seunghee;Kim, Ju-Won;Lee, Changgil;Lee, Jongjae;Gil, Heung-Bae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.287-292
    • /
    • 2012
  • In this study, Multi-Channel Magnetic Flux Leakage(MFL) sensor - based inspection system was applied to monitor the condition of cables. This inspection system measures magnetic flux to detect the local faults(LF) of steel cable. To verify the feasibility of the proposed damage detection technique, an 8-channel MFL sensor head prototype was designed and fabricated. A steel cable bunch specimen with several types of damage was fabricated and scanned by the MFL sensor head to measure the magnetic flux density of the specimen. To interpret the condition of the steel cable, magnetic flux signals were used to determine the locations of the flaws and the level of damage. Measured signals from the damaged specimen were compared with thresholds set for objective decision making. In addition, the magnetic flux density values measured from every channel were summed to focus on the detection of axial location. And, sum of flux density were displayed with threshold. Finally, the results were compared with information on actual inflicted damages to confirm the accuracy and effectiveness of the proposed cable monitoring method.

Characteristic Analysis of a Magnet for Magnetically Levitated Vehicle using FLUX3D (FLUX3D를 이용한 자기부상용 전자석의 특성 해석)

  • Lee, Jae-Kun;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.127-129
    • /
    • 1996
  • A 3-dimensional analysis is desired for a magnet of magnetically levitated vehicle because the geometrical shape of the magnet is complicated and nonsymmetric. A FEM package of FLUX3D is used to analyze the characteristic of the magnet. Various quantities could be observed like levitation force, flux density distribution along the air gap, edge and fringing effect, leakage flux pattern, etc. The simulation results from FLUX3D are compared with those of 2-D analysis and test results. There are a little difference between results due to the boundary conditions and magnetized B-H curve of the core.

  • PDF

The Characteristic Analysis of the Ag/Bi-2223 Tape and the Flux damper in GTS Synchronous Motor through 3-Dimensional Magnetic Field Analysis Using F.E.M (3차원 자계분포해석을 이용한 고온초전도동기모터에서의 Ag/Bi-2223 Tape 및 Flux Damper의 특성해석)

  • 송명곤;윤용수;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.170-172
    • /
    • 2000
  • This paper deals with the characteristic analysis of the flux damper with respect to the load, and the stability of Ag/Bi-2223 tapes in a high-Tc superconducting (HTS) synchronous motor. To find out the magnetic field distribution in a detailed model of the actual motor, the experimentally measured currents of the armature and the field windings are used as input parameters. The simulation results show that the flux damper shields the time varying field up to 10%, reduces armature reactance during the motor operation and during load changes, improving the stable motor operation. And it was observed that the flux damper generates loss by means of leakage flux, but this is not significant and it doesn't degrade the performance of the TS synchronous motor.

  • PDF