• Title/Summary/Keyword: Leak current

Search Result 103, Processing Time 0.025 seconds

Current Status of an International Co-Operative Research Program, PARTRIDGE (Probabilistic Analysis as a Regulatory Tool for Risk-Informed Decision GuidancE) (국제공동연구 PARTRIDGE를 통한 확률론적 건전성 평가 기술 개발 현황)

  • Kim, Sun Hye;Park, Jung Soon;Kim, Jin Su;Lee, Jin Ho;Yun, Eun Sub;Yang, Jun Seog;Lee, Jae Gon;Park, Hong Sun;Oh, Young Jin;Kang, Sun Yeh;Yoon, Ki Seok;Park, Jai Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 2013
  • A probabilistic assessment code, PRO-LOCA ver. 3.7 which was developed in an international co-operative research program, PARTRIDGE was evaluated by conducting sensitivity analysis. The effect of some variables such as simulation methods (adaptive sampling, iteration numbers, weld residual stress model), crack features(Poisson's arrival rate, maximum numbers of cracks, initial flaw size, fabrication flaws), operating and loading conditions(temperature, primary bending stress, earthquake strength and frequency), and inspection model(inspection intervals, detectable leak rate) on the failure probabilities of a surge line nozzle was investigated. The results of sensitivity analysis shows the remaining problems of the PRO-LOCA code such as the instability of adaptive sampling and unexpected trend of failure probabilities at an early stage.

An Predictive System for urban gas leakage based on Deep Learning (딥러닝 기반 도시가스 누출량 예측 모니터링 시스템)

  • Ahn, Jeong-mi;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose a monitoring system that can monitor gas leakage concentrations in real time and forecast the amount of gas leaked after one minute. When gas leaks happen, they typically lead to accidents such as poisoning, explosion, and fire, so a monitoring system is needed to reduce such occurrences. Previous research has mainly been focused on analyzing explosion characteristics based on gas types, or on warning systems that sound an alarm when a gas leak occurs in industrial areas. However, there are no studies on creating systems that utilize specific gas explosion characteristic analysis or empirical urban gas data. This research establishes a deep learning model that predicts the gas explosion risk level over time, based on the gas data collected in real time. In order to determine the relative risk level of a gas leak, the gas risk level was divided into five levels based on the lower explosion limit. The monitoring platform displays the current risk level, the predicted risk level, and the amount of gas leaked. It is expected that the development of this system will become a starting point for a monitoring system that can be deployed in urban areas.

  • PDF

Electrochemical Characteristics of EDLC with various Organic Electrolytes (유기전해질에 따른 EDLC의 전기화학적 특성)

  • Yang Chun-Mo;Lee J.K.;Cho W.I.;Cho B.W.;Rim Byung-O
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.113-117
    • /
    • 2001
  • Specific capacitance and charge-discharge rate of EDLC using activated carbon electrode were affected by the compositions of electrolytes, the conditions of charge-discharge and physical properties of activated carbon materials. The activated carbon electrode was prepared by dip coating method. Charge-discharge test and electrochemical experiments were carried out for various kinds of organic electrolytes. Effects of charge and discharge current density on the specific capacitance were studied. Characteristics of leakage current, self-discharge and time-voltage curves in optimum conditions of organic electrolytes were compared with conventional $1M-Et_4NBF_4/PC$ electrolyte. The EDLC using MSP-20(specific surface area: $2000m^2/g$) electrode and $1M-LiPF_6/PC-DEC(1:1)$ was exhibited th highest specific capacitance of 130F/g and low polarization resistances. The EDLC using MSP-20 electrode at $1M-LiPF_6/PC-DEC(1:1)$ was small leak current of 0.0004A for 15min, long voltage retention of 0.8V after 100h and linear time-voltage curves with small IR-drop.

Development of a Remote Central Monitoring System of Street Lights (가로등 원격감시 중앙관제시스템 개발)

  • Ha, Kwan-Yong;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.43-45
    • /
    • 2004
  • A remote monitoring system was developed to improve inconveniences of manual work such as monitoring street lights by using current sensors, microprocessor and RF communication system. In order to control the street lights on the roads effectively and monitor them in real time, we can attach current sensor to the street lights which monitors Lamp, the broken part and state of the Balast, and the amount of an electric leak precisely we developed a system which makes it possible to transmit the data on monitoring results in breakdown of street lights and Balasts to the central monitoring computer without setting up extra data transmission line. The system we devised can transmit data through Power Line Modem and RF communication using relay method to the central controlling computer without any loss of data.

  • PDF

A Study on the Supply and Stray Current Distribution of the DC Railway Power System (직류전기철도 급전시스템에서 공급 및 누설전류 분포에 관한 연구)

  • Cho, Woong-Ki;Choi, Kyu-Hyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.160-168
    • /
    • 2010
  • This paper presents the analysis of the current as stray current and supplied current of the substation, on the DC railway power system. In DC railway power supply system, the running rails are usually used as the return conductor(negative-polarity) for traction load current. This condition mainly focuses on economic considerations, since it does not require the installation of an additional return conductor. But, problems of low resistance between the running rails for the return conductor and earth allows a significant part of the return load current to leak into the earth. This current is normally called to as leakage or stary current. This stary currents creates serious problems for any electrified matter in the underground. Therefore, reduction of stray current of the DC railway power supply system is also of direct benefit to the operational and safety aspects of the DC railway systems. In this paper, deal with the analysis of the current distribution on the DC railway power system applied the common grounding system, using SPLIT of CDEGS program.

Parametric Study of AC Current Lead for the Termination of HTS Power Cable

  • Kim, D.L;Kim, S.H.;S. Cho;H.S. Yang;Kim, D.H.;H.S. Ryoo;K.C. Seong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.107-110
    • /
    • 2003
  • High Temperature Superconductor (HTS) transmission cable can carry more than 2 to 5 times higher electricity and also obtain substantially lower transmission losses than conventional cables. Liquid nitrogen is to be used to cool the HTS power cable and its cost is much cheaper than the liquid helium used for the cooling of metal superconducting wire. In Korea the HTS power cable development project has been ongoing since July, 2001 with the basic specifications of 22.9kV, 50MVA and told dielectric type as the first 3-year stage. The cryogenic system of the HTS cable is composed of HTS cable cryostat termination and refrigeration system. Termination of HTS cable is a connecting part between copper electrical cable at room temperature and HTS cable at liquid nitrogen temperature. In order to design the termination cryostat, it is required that the conduction heat leak and Joule heating on the current lead be reduced, the cryostat be insulated electrically and good vacuum insulation be maintained during long time operation. Heat loads calculations on the copper current lead have been performed by analytical and numerical method and the feasibility study fer the other candidate materials has also been executed.

Numerical Analysis of the Interference of the Buried Pipeline due to the Stray Current from the Parallel Electric Railway (전기철도와 평행한 매설배관에서 누설전류에 의한 간섭현상의 수치해석적 연구)

  • Jung, Chan-Oong;Choi, Kyu-Hyoung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.8-13
    • /
    • 2008
  • The stray current interference problem could induce the corrosion of near-by structure and rail itself. Many efforts has been concentrated on the reduction of the interference. In this work the influences of separation distance, soil resistivity, pipe coating resistance, leak resistance of rail were studied using the numerical analysis methods. These analysis could be used to estimate the sensitivity of each variables in the study of the mitigation method and their numerical analysis.

  • PDF

Implementation of Leakage Monitoring System Using ZigBee (ZigBee를 적용한 누전상태 모니터링시스템 구현)

  • Ju, Jae-han;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.107-112
    • /
    • 2017
  • In recent years, electric shock accidents due to electric leakage currents of household appliances such as computers, TVs, refrigerators, and LED lights are continuously occurring in homes and industrial buildings. And it is not easy to check the leakage current of each household appliances connected in parallel at the rear end of the module. In addition, the leakage current flowing through the path of the normal current other than the existing current leakage circuit breakers are installed in the distribution box, only the function to cut off the power when the leakage. Therefore, there are various disasters such as electric shock and fire caused by short circuit of household appliances, and the risk of such leakage current is seriously presented. In this paper, we propose a method to implement a leakage monitoring system that can be monitored at all times using Zigbee communication based on IEEE 80215.4, which has advantages in low power and low cost among short range wireless communication systems.

Design of Low Power Current Memory Circuit based on Voltage Scaling (Voltage Scaling 기반의 저전력 전류메모리 회로 설계)

  • Yeo, Sung-Dae;Kim, Jong-Un;Cho, Tae-Il;Cho, Seung-Il;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 2016
  • A wireless communication system is required to be implemented with the low power circuits because it uses a battery having a limited energy. Therefore, the current mode circuit has been studied because it consumes constant power regardless of the frequency change. However, the clock-feedthrough problem is happened by leak of stored energy in memory operation. In this paper, we suggest the current memory circuit to minimize the clock-feedthrough problem and introduce a technique for ultra low power operation by inducing dynamic voltage scaling. The current memory circuit was designed with BSIM3 model of $0.35{\mu}m$ process and was operated in the near-threshold region. From the simulation result, the clock-feedthrough could be minimized when designing the memory MOS Width of $2{\mu}m$, the switch MOS Width of $0.3{\mu}m$ and dummy MOS Width of $13{\mu}m$ in 1MHz switching operation. The power consumption was calculated with $3.7{\mu}W$ at the supply voltage of 1.2 V, near-threshold voltage.

Low Temperature Hermetic Packaging using Localized Beating (부분 가열을 이용한 저온 Hermetic 패키징)

  • 심영대;김영일;신규호;좌성훈;문창렬;김용준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1033-1036
    • /
    • 2002
  • Wafer bonding methods such as fusion and anodic bonding suffer from high temperature treatment, long processing time, and possible damage to the micro-scale sensor or actuators. In the localized bonding process, beating was conducted locally while the whole wafer is maintained at a relatively low temperature. But previous research of localized heating has some problems, such as non-uniform soldering due to non-uniform heating and micro crack formation on the glass capsule by thermal stress effect. To address this non-uniformity problem, a new heater configuration is being proposed. By keeping several points on the heater strip at calculated and constant potential, more uniform heating, hence more reliable wafer bonding could be achieved. The proposed scheme has been successfully demonstrated, and the result shows that it will be very useful in hermetic packaging. Less than 0.2 ㎫ contact Pressure were used for bonding with 150 ㎃ current input for 50${\mu}{\textrm}{m}$ width, 2${\mu}{\textrm}{m}$ height and 8mm $\times$ 8mm, 5mm$\times$5mm, 3mm $\times$ 3mm sized phosphorus-doped poly-silicon micro heater. The temperature can be raised at the bonding region to 80$0^{\circ}C$, and it was enough to achieve a strong and reliable bonding in 3minutes. The IR camera test results show improved uniformity in heat distribution compared with conventional micro heaters. For gross leak check, IPA (Isopropanol Alcohol) was used. Since IPA has better wetability than water, it can easily penetrate small openings, and is more suitable for gross leak check. The pass ratio of bonded dies was 70%, for conventional localized heating, and 85% for newly developed FP scheme. The bonding strength was more than 30㎫ for FP scheme packaging, which shows that FP scheme can be a good candidate for micro scale hermetic packaging.

  • PDF