• Title/Summary/Keyword: Leaf photosynthetic rate

Search Result 259, Processing Time 0.023 seconds

Chlorophyll contents and expression profiles of photosynthesis-related genes in water-stressed banana plantlets

  • Sri Nanan Widiyanto;Syahril Sulaiman;Simon Duve;Erly Marwani;Husna Nugrahapraja;Diky Setya Diningrat
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.127-136
    • /
    • 2023
  • Water scarcity decreases the rate of photosynthesis and, consequently, the yield of banana plants (Musa spp). In this study, transcriptome analysis was performed to identify photosynthesis-related genes in banana plants and determine their expression profiles under water stress conditions. Banana plantlets were in vitro cultured on Murashige and Skoog agar medium with and without 10% polyethylene glycol and marked as BP10 and BK. Chlorophyll contents in the plant shoots were determined spectrophotometrically. Two cDNA libraries generated from BK and BP10 plantlets, respectively, were used as the reference for transcriptome data. Gene ontology (GO) enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway prediction. Morphological observations indicated that water deficiency caused chlorosis and reduced the shoot chlorophyll content of banana plantlets. GO enrichment identified 52 photosynthesis-related genes that were affected by water stress. KEGG visualization revealed the pathways related to the 52 photosynthesisr-elated genes and their allocations in four GO terms. Four, 12, 15, and 21 genes were related to chlorophyll biosynthesis, the Calvin cycle, the photosynthetic electron transfer chain, and the light-harvesting complex, respectively. Differentially expressed gene (DEG) analysis using DESeq revealed that 45 genes were down-regulated, whereas seven genes were up-regulated. Four of the down-regulated genes were responsible for chlorophyll biosynthesis and appeared to cause the decrease in the banana leaf chlorophyll content. Among the annotated DEGs, MaPNDO, MaPSAL, and MaFEDA were selected and validated using quantitative real-time PCR.

The Effect of Cutting Positions and Temperature on the Rooting of Bitter Gourd (여주 삽목 시 삽수절단 위치와 온도조건이 발근에 미치는 영향)

  • Lee, Hee Ju;Lee, Sang Gyu;Kim, Sung Kyeom;Choi, Chang Sun;Kim, Sang Beom
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.162-167
    • /
    • 2016
  • This study was carried out to investigate proper stem cutting position and air temperature to regenerate roots from cuttings of bitter gourd. 'NS454' (NS) and 'Dragon' (DR) cultivars were tested and the cutting position was cut at the 3rd node in the stem (treatment I) and cut at the central part (stem segment) between 3rd leaf and 4th leaf in the stem (treatment II). The air temperature was maintained at 18, 23, 28 and $35^{\circ}C$ in the growth chambers, respectively. The photosynthetic photon flux at the ground of a chamber was maintained in approximately $150-200{\mu}mol\;m^{-2}s^{-1}$ during the 16-hour photoperiod. The relative humidity in the chambers was maintained over 85%. After 10 days of cuttings, regardless of cutting position, DR and NS cultivars showed 100% the survival rate in the $18^{\circ}C$ or $23^{\circ}C$ treatments, however, most of plants $18^{\circ}C$ treatment had not rooting. In the $28^{\circ}C$ treatment, regardless of cutting position, DR and NS cultivars showed 100% of the rooting rate. In the $23^{\circ}C$ treatment, for DR cultivar, the node cutting showed 90% of rooting rate and the stem segment cutting showed 40% rooting rate. For NS cultivar, the node cutting showed 50% of rooting rate and the stem segment cutting showed 40% rooting rate. DR and NS cultivars have high rooting rate, while the rooting rate remarkably decreased in the $35^{\circ}C$ treatment. For DR cultivar, the stem segment cutting showed 5.3 of the highest rooting number and the node cutting showed 2.7 rooting number in the $28^{\circ}C$ treatment. NS cultivar was not significantly different the rooting regardless of cutting position. The results suggested that cutting at the stem segment cutting of bitter gourd is an effective cutting method for increasing survival rate and the air temperature should be maintained at $28^{\circ}C$.

Photosynthesis and Growth of Southern-type Garlic (Allium sativum L.) in Response to Elevated Temperatures in a Temperature Gradient Tunnel (온도구배터널 내 상승온도에 의한 난지형 마늘(Allium sativum L.)의 광합성 및 생육 특성의 변화)

  • Oh, Seo-Young;Moon, Kyung Hwan;Song, Eun Young;Shin, Minji;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.250-260
    • /
    • 2019
  • This study assessed clove germination, shoot growth, photosynthesis and bulb development of southern-type garlic (Allium sativum L.) in a temperature gradient tunnel (TGT), to examine the impacts of increases in temperature on the growth of garlic and find a way to minimize them. The temperatures in the middle and outlet of the TGT were 3.2℃ and 5.8℃ higher, respectively, than the ambient temperature at the tunnel inlet. The germination of garlic cloves was late at temperatures of ambient+3℃ (in the middle of the TGT) and ambient+6℃ (at the outlet) than at ambient temperature (at the inlet). However, bolting and the timing of maximum leaf number per plant were faster at ambient+3℃ or +6℃ than at ambient temperature. Shoot growth was generally greater at ambient temperature. Bulb growth did not significantly differ according to cultivation temperatures, but fresh and dry weights were slightly higher at ambient temperature and ambient+3℃ in the late growth stage. The photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E) were higher at ambient+3℃ than at ambient temperature. Furthermore, at ambient+3℃, the net photosynthetic rate (Amax) was high, while the dark respiration rate (Rd) was low. At ambient temperature and ambient+3℃, bulb development was healthier, resulting in better productivity and more commercial bulbs, while at ambient+6℃, the bulbs were small and secondary cloves developed, resulting in low commercial value. Therefore, at elevated temperatures caused by global warming, it is necessary to meet the low-temperature requirements before clove sowing, or to delay the sowing time, to improve germination rate and increase yield. The harvest should also be advanced to escape high-temperature stress in the bulb development stage.

Ameliorating Effect of $\textrm{Ca}({NO_3})_2$ or $\textrm{CaCl}_2$ on the Growth and Yield of NaCl-Stressed Tomato Grown in Plastic Pots Filled with Soil (NaCl 스트레스를 받은 토마토의 생육 향상을 위한 $\textrm{Ca}({NO_3})_2$$\textrm{CaCl}_2$ 처리 효과)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • Enhanced supply of $Ca^{2+}$ as well as NO$_3$$^{[-10]}$ is known to restrict the uptake of the Na$^{+}$ and Cl$^{[-10]}$ ion and ameliorate growth under saline conditions. This test was conducted to investigate the ameliorating effects of Ca(NO$_3$)$_2$ or CaCl$_2$ on the growth and yield of NaCl-stressed tomato plants grown in plastic pot filled with soil. All treatments except for the control were supplied with 80 mM NaCl fur two weeks after transporting. The saline solutions with nutrient were supplemented with either 0, 10 or 20 mM Ca(NO$_3$)$_2$ and either 0, 10 or 20 mM CaCl$_2$ during harvesting time from two weeks after transporting. Ca(NO$_3$)$_2$ or CaCl$_2$ application enhanced the growth such as plant height, fresh weight, dry weight, fruit number, and fruit weight, and yield of NaCl-stressed tomato, and also their effects increased greater as concentration of supplemented Ca(NO$_3$)$_2$ or CaCl$_2$increased. Yield increased in 20 mM Ca(NO$_3$)$_2$ compared with the others except fur the control. Photosynthetic rate in Ca treatments was lower than that of the control, but higher than that of NaCl treatment. Leaf chlorophyll content was higher in Ca treatments compared with the others, especially in younger leaf, while that was not affected by concentration of supplemented Ca. Ca(NO$_3$)$_2$ or CaCl$_2$ supply increased the $K^{+}$ and $C^{2+}$ concentration of tomato plants, whereas the Na$^{+}$ transport to the leaves was inhibited. There was a strong increase in the $K^{+}$/Na$^{+}$ ratio in plants treated Ca(NO$_3$)$_2$, or CaCl$_2$. Cl$^{[-10]}$ content of plants was decreased by supplemental Ca(NO$_3$)$_2$ but Cl$^{[-10]}$ was increased in plants with CaCl$_2$compared with Ca(NO$_3$)$_2$. N concentration in plants of tomato increased with enhanced Ca(NO$_3$)$_2$ or CaCl$_2$supply, In conclusion, our study confirms the potential of Ca(NO$_3$)$_2$ or CaCl$_2$to alleviate NaCl-induced growth reductions in tomato.

Effects of Slow-Released Nitrogen Fertilizer Using Waste Paper Slurry on the Growth and Yield of Chinese Cabbage and Chemical Properties of Soil (폐지섬유를 이용한 완효성 요소비료가 배추의 생육 및 수량과 토양의 화학성에 미치는 영향)

  • Back, Jun-Ho;Kim, Bok-Jin;Park, Woo-Churl;Kang, Sang-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.327-331
    • /
    • 1999
  • The purpose of this study was to find out the effects of slow-released nitrogen fertilizer (SRF) on the growth and yield of Chinese cabbage. The SRF used in this study was prepared by embedding urea into a waste paper slum. The underwater dissolution rate of SRF was very rapid during the first 12 hours and 60.4% of the embedded nitrogen was released after 72 hours. The SRF and urea was applied as nitrogen source and growth. yield, yield components, nitrogen uptake of Chinese cabbage were investigated a pot experiment. Maximum leaf length of Chinese cabbage was not different between SRF and urea treatments. Length and wish of head, number of leaf per head and fresh weight of Chinese cabbage were higher in SRF treatment than those in urea treatment, but the differences were not statistically significant. Comparing to the urea treatment, nitrogen content and nitrogen uptake efficiency of Chinese cabbage were significantly higher in SRF treatment. After the experiment, total soil nitrogen contents were not different between the SRF and urea treatments.

  • PDF

Effect of a Serial Irradiation of Low Dose Gamma Rays on the Growth and Photosynthesis of Red Pepper (Capsicum annuum L.) Plants

  • Kim, Jin-Hong;Chung, Byung Yeoup;Wi, Seung Gon;Baek, Myung-Hwa;Lee, Myung Chul;Kim, Jae-Sung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.537-542
    • /
    • 2004
  • To reveal the relationship between the changes in the growth and photo- synthesis induced by low dose radiation, red pepper (Capsicum annuum L.) plants were serially irradiated three times with gamma rays of 0.5, 1, 2, 3, and 4 Gy. The plant growth was monitored by the fresh weight, the stem length, and the leaf length & width. All the irradiation groups (0.5-4 Gy) were stimulated in growth at 1 day after the $1^{st}$ irradiation (DA1I), but rather inhibited at 3 days after the $3^{rd}$ irradiation (DA3I). The maximum photochemical efficiency (Fv/Fm), the photochemical quenching (qP), the non-:photochemical quenching (NPQ) and the apparent rate of the photosynthetic electron transport (ETR) were used to represent the changes in the photosynthesis by the serial irradiation. The irradiation groups except 0.5 Gy had higher Fv/Fm values at 3 DA3I than the control one. After the 3$^{rd}$ irradiation, the qP values appeared to be a little lower in the 1-4 Gy groups than in the control and 0.5 Gy ones. In contrast, the NPQ values were rather higher in the irradiation groups except 0.5 Gy. During the whole experimental period, the ETRs decreased in the control group but remained relatively constant in the 4-Gy one. In conclusion, the results obtained indicate that the stimulatory effect of ionizing radiation on the plant growth was determined by the incident dose of the single irradiation rather than by the cumulative one of the serial irradiation. They also demonstrate that the growth stimulation induced by a low dose radiation could not be positively correlated with an alteration in the photosynthesis. Additionally, we discuss in text that an ionizing radiation may partly protect the leaf senescence by delaying the development of the plants.

Effects of Nitrogen Level and Defoliation at Maturing Stage on the Yield Components of Rice (질소시용량(窒素施用量) 및 등숙기(登熟期) 절엽처리(切葉處理)가 수도수량구성요소(水稻收量構成要素)에 미치는 영향(影響))

  • Ahn, Su-Bong;Lee, Jong-Chul
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.1
    • /
    • pp.26-33
    • /
    • 1977
  • We have studied the responce of nitrogen on the newly bred varieties, Yusin and Milyang #23, and the effects of defoliation at maturing stage on the rate of ripened grains under different nitrogen levels. The results obtained are summarized as follows : 1. Milyang #23 as well as Tongil was found to be highly nitrogen responsive variety and showed good grain maturing percentage. The number of grain per unit area affected the total yield under the high levels of nitrogen application. The variety, Yusin, was less responsive to nitrogen and had also less leaf area than other varieties under the high level of nitrogen application. Yusin also seemed to have low maturing percentage due to unbalanced ratio between photosynthetic area and size of storage. 2. The low internodes and leaf blade of Yusin and Milyang #15 were grown too much under high levels of nitrogen and these caused more lodging and less light penetration in pant canopy. 3. The effects of defoliation at maturing stage on yield was high under the high levels of nitrogen application, especially when defoliation was done early stage of maturing. The effects of defoliation appeared to be greates in Tongil than in Milyang #15.

  • PDF

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature (고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응)

  • Oh, Soonja;Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Moon, Young Eel;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.318-329
    • /
    • 2014
  • In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF

Effects of Supplemental Lighting of High Pressure Sodium and Lighting Emitting Plasma on Growth and Productivity of Paprika during Low Radiation Period of Winter Season (겨울철 약광기 파프리카의 생육 및 생산성에 대한 고압나트륨 및 Lighting Emitting Plasma 램프의 보광 효과)

  • Lee, Jong-Won;Kim, Ho Cheol;Jeong, Pyeong Hwa;Ku, Yang-Gyu;Bae, Jong Hyang
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.346-352
    • /
    • 2014
  • This research was carried out to investigate the effect of supplemental lighting on stable productivity of paprika (Capsicum annuum L.) during low radiation period of winter season. The supplemental lighting sources used in this research were high pressure sodium (HPS) and lighting emitting plasma (LEP). Photosynthetic photon flux density (PPFD) emitted from both lamps decreased as vertical distance from lamp increased. The PPFD of LEP lamps were twice more than that of the HPS lamp per unit distance, but the rate of decreased PPFD of t he LEP per unit distance was higher than that of HPS lamp. And different degrees of PPFD between HPS and LEP lamps by horizontal distance had a smaller degree of difference than by vertical distance at the 100 cm away point. As daily average PPFD measured at the top of the plant under the supplemental lighting during January, the supplemental lighting significantly increased radiation. Radiation of HPS and LEP lighting was 137% and 315% higher than control (without supplemental lighting = sunlight). Air temperature in the top of the plant was not significant different among treatments. HPS and LEP lighting had no effect on increase of flower settings. Leaf length and width with LEP lighting was the longest, photosynthetic was higher than those of other treatments. Supplemental lighting treatments significant increased fruit length and diameter. Especially LEP lighting treatment had a greater effect on fruit length and diameter. In conclusion, LEP lighting treatment during low radiation period greatly affected growth and production of paprika. Further research will be required for the suitable application of LEP lighting in paprika production.