• Title/Summary/Keyword: Leaf parameter

Search Result 66, Processing Time 0.025 seconds

Inorganic Element Concentrations in Different Organs of Young Persimmon Trees Received Different Levels of K Fertilization and Its Influence on the Fruit aracteristics (칼륨 시비량에 따른 감나무 유목의 수체 부위별 무기원소 농도 및 과실 특성)

  • Choi, Seong-Tae;Park, Doo-Sang;Son, Ji-Young;Park, Yeo-Ok;Hong, Kwang-Pyo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.166-170
    • /
    • 2013
  • BACKGROUND: Persimmon growers have often tried various regimens of K fertilization to improve fruit quality. This experiment was conducted to determine the effects of K rates on concentration of inorganic elements in different tree organs and on fruit characteristics. METHODS AND RESULTS: Six-year-old non-astringent 'Fuyu' persimmons, grown in 50-L pots, were used. Total K amounts of 0 (no-application), 12, 25, 37, and 66 g were fertigated to a pot with KCl solution at 3-to 4-day intervals from July to September. The 0 K trees received no K fertilizer for the two previous years. Leaves, fruits, and shoots were sampled in November. K concentrations in leaves and shoots increased significantly by increasing K rate; leaf K, 0.49% for the 0 K, increased to 3.09% for the 37 g and 3.11% for the 66 g trees. Fruit K was notably lower for the 0 K, but there were no significant differences among the trees as long as they were supplied with more than 12-g K. In the trees with 0 K, leaf necrosis in the margin was apparent in June and the symptom progressed toward the midrib. Some leaves scorch-rolled from the margin in August. The greatest effect of K rates was on fruit size; it significantly increased to 181 g for the 12 g, 203 g for the 37 g, and 206 g for the 66 g compared with 150 g for the 0 K trees. However, K rates did not affect firmness and soluble solids of the fruits. The fruits of the 0 K trees were characterized by better coloration. CONCLUSION(S): The K-rate effect on inorganic elements depended on tree organs and fruit size was the major parameter to be affected by the K rates.

Population Structure and Fine-scale Habitat Affinity of Cymbidium kanran Protected Area as a Natural Monument (천연기념물 한란 보호구역의 개체군 구조 및 미세 서식처 선호성)

  • Shin, Jae-Kwon;Koo, Bon-Youl;Kim, Han-Gyeoul;Kwon, He-Jin;Son, Sung-Won;Lee, Jong-Seok;Cho, Hyun-Je;Bae, Kwan-Ho;Cho, Young-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.176-185
    • /
    • 2014
  • There are no population ecological research on the natural monument (No. 191) Jeju Cymbidium kanran in South Korea. In this study, we analyzed the population structure and fine-scale habitat affinity of C. kanran in Sanghyo-dong, Jejudo Island from Oct. 2013 to Feb. 2014. We observed total of 1,237 individuals (4,341 pseudobulbs) of C. kanran (989.6 population $ha^{-1}$) within (1.25 ha) and only 17 (1.4%) individuals were inflorescent. In 60.9% of the entire populations, disease symptoms such as spots and blight leaves were observed. C. kanran populaton exhibited reverse-J shaped size distribution based on leaf area classes as individual size parameter. The three size related attributes of C. kanran (no. of pseudobulb $r_s$=-0.159, no. of leaves $r_s$=-0.148 and leaf arera $r_s$=-0.114) and soil temperature revealed a negative relationship (p<0.0001). Most of C. kanran (95.4%) were grown under Castamopsis cuspidata and spatially, C. kanran were strongly clumped at all distances. Population characteristics of C. kanran in the study area were likely originated from species habitat affinity and successional environment. Through this study, base line data for C. kanran's habitat monitoring was established and conservation measures based on population characteristics were discussed.

An Empirical Model for Forecasting Alternaria Leaf Spot in Apple (사과 점무늬낙엽병(斑點落葉病)예찰을 위한 한 경험적 모델)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.4 s.69
    • /
    • pp.221-228
    • /
    • 1986
  • An empirical model to predict initial disease occurrence and subsequent progress of Alternaria leaf spot was constructed based on the modified degree day temperature and frequency of rainfall in three years field experiments. Climatic factors were analized 10-day bases, beginning April 20 to the end of August, and were used as variables for model construction. Cumulative degree portion (CDP) that is over $10^{\circ}C$ in the daily average temperature was used as a parameter to determine the relationship between temperature and initial disease occurrence. Around one hundred and sixty of CDP was needed to initiate disease incidence. This value was considered as temperature threshhold. After reaching 160 CDP, time of initial occurrence was determined by frequency of rainfall. At least four times of rainfall were necessary to be accumulated for initial occurrence of the disease after passing temperature threshhold. Disease progress after initial incidence generally followed the pattern of frequency of rainfall accumulated in those periods. Apparent infection rate (r) in the general differential equation dx/dt=xr(1-x) for individual epidemics when x is disease proportion and t is time, was a linear function of accumulation rate of rainfall frequency (Rc) and was able to be directly estimated based on the equation r=1.06Rc-0.11($R^2=0.993$). Disease severity (x) after t time could be predicted using exponential equation $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$ derived from the differential equation, when $x_0$ is initial disease, $b_0\;and\;b_1$ are constants. There was a significant linear relationship between disease progress and cumulative number of air-borne conidia of Alternaria mali. When the cumulative number of air-borne conidia was used as an independent variable to predict disease severity, accuracy of prediction was poor with $R^2=0.3328$.

  • PDF

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

Growth and Phytochemical Contents of Spinach as Affected by Different Type of Fluorescent Lamp in a Closed-type Plant Production System (밀폐형 식물 생산 시스템에서 형광등 종류에 따른 시금치의 생육 및 기능성물질 함량)

  • Kim, Hyeon Min;Kim, Hye Min;Lee, Hye Ri;Lee, Jae Eun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.386-392
    • /
    • 2017
  • This study was conducted to examine the growth and phytochemical contents of spinach (Spinacia Oleracea L. 'Sushiro') as affected by different fluorescent lamps in a closed-type plant production system. Seeds were sown in a 128-cell plug tray filled in rockwool. The seedlings were transplanted into a DFT (deep floating technique) system with recycling nutrient solution (EC $1.5dS{\cdot}m^{-1}$ and pH 6.5) in a closed-type plant production system. The seedlings were grown under 3 types of fluorescent lamp, #S (NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O (FHF32SSEX-D, Osram Co. Ltd., Germany), and #P (FLR32SS EX-D, Philips Co. Ltd., The Netherlands) at $150{\mu}mol{\cdot}m-2{\cdot}s^{-1}\;PPFD$ with a photoperiod of 14/10 (light/dark) hours. Plants were cultured under condition of $25{\pm}1^{\circ}C$ temperature and $60{\pm}10%$ relative humidity after transplanting. Thirty plants per each treatment were cultivated for $6^{th}$ week after transplanting. And growth and phytochemical contents were measured at $3^{rd}$ and $6^{th}$ week. At the $3^{rd}$ week after transplanting, the parameter values of plant height and leaf width were higher in the #O than the others. However, fresh and dry weights of root were the greatest in the #P. In addition, total phenolic concentration was the greatest in the #P. At $6^{th}$ week after transplanting, the #O had the greatest growth of spinach in the plant height and fresh and dry weights of shoot. The total phenolic contents significantly increased in the #O and showed significantly difference. However, there was no significant difference all treatments in antioxidant activity. Therefore, these results suggest that the #O was suitable for the growth and phytochemical accumulation of spinach in a closed-type plant production system.

Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses (스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Lee, Jae-Su;Hong, Seung-Gil;Lee, Gong-In;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of $150{\mu}mol/m^2/s$ light intensity for 35 days. Growth data of the seedlings were classified and stored to develop the relational database in the virtual machine which was generated from an open stack cloud system on the base of growth parameter. Relation of the plant growth and nutrient absorption pattern of 9 inorganic components inside the media during the cultivation period was investigated. The stored data associated with component changes and growth parameters were visualized on the web through the web framework and Node JS. CONCLUSION: Time-series changes of inorganic components in the culture media were observed. The increases of the unfolded leaves or fresh weight of the seedlings were mainly dependent on the macroelements such as a $NO_3-N$, and affected by the different inorganic and organic media. Though the data analysis system was developed, actual measurement data were offered by using the user smart device, and analysis and comparison of the data were visualized graphically in time series based on the cloud database. Agricultural management in data visualization and/or plant growth can be implemented by the data analysis system under whole agricultural sites regardless of various culture environmental changes.